13 research outputs found

    Bringing Background into the Foreground: Making All Classes Equal in Weakly-supervised Video Semantic Segmentation

    Get PDF
    Pixel-level annotations are expensive and time-consuming to obtain. Hence, weak supervision using only image tags could have a significant impact in semantic segmentation. Recent years have seen great progress in weakly-supervised semantic segmentation, whether from a single image or from videos. However, most existing methods are designed to handle a single background class. In practical applications, such as autonomous navigation, it is often crucial to reason about multiple background classes. In this paper, we introduce an approach to doing so by making use of classifier heatmaps. We then develop a two-stream deep architecture that jointly leverages appearance and motion, and design a loss based on our heatmaps to train it. Our experiments demonstrate the benefits of our classifier heatmaps and of our two-stream architecture on challenging urban scene datasets and on the YouTube-Objects benchmark, where we obtain state-of-the-art results.Comment: 11 pages, 4 figures, 7 tables, Accepted in ICCV 201

    Learning monocular 3D reconstruction of articulated categories from motion

    Get PDF
    Monocular 3D reconstruction of articulated object categories is challenging due to the lack of training data and the inherent ill-posedness of the problem. In this work we use video self-supervision, forcing the consistency of consecutive 3D reconstructions by a motion-based cycle loss. This largely improves both optimization-based and learning-based 3D mesh reconstruction. We further introduce an interpretable model of 3D template deformations that controls a 3D surface through the displacement of a small number of local, learnable handles. We formulate this operation as a structured layer relying on mesh-laplacian regularization and show that it can be trained in an end-to-end manner. We finally introduce a per-sample numerical optimisation approach that jointly optimises over mesh displacements and cameras within a video, boosting accuracy both for training and also as test time post-processing. While relying exclusively on a small set of videos collected per category for supervision, we obtain state-of-the-art reconstructions with diverse shapes, viewpoints and textures for multiple articulated object categories.Comment: For project website see https://fkokkinos.github.io/video_3d_reconstruction

    Frame-to-Frame Aggregation of Active Regions in Web Videos for Weakly Supervised Semantic Segmentation

    Full text link
    When a deep neural network is trained on data with only image-level labeling, the regions activated in each image tend to identify only a small region of the target object. We propose a method of using videos automatically harvested from the web to identify a larger region of the target object by using temporal information, which is not present in the static image. The temporal variations in a video allow different regions of the target object to be activated. We obtain an activated region in each frame of a video, and then aggregate the regions from successive frames into a single image, using a warping technique based on optical flow. The resulting localization maps cover more of the target object, and can then be used as proxy ground-truth to train a segmentation network. This simple approach outperforms existing methods under the same level of supervision, and even approaches relying on extra annotations. Based on VGG-16 and ResNet 101 backbones, our method achieves the mIoU of 65.0 and 67.4, respectively, on PASCAL VOC 2012 test images, which represents a new state-of-the-art.Comment: ICCV 201

    CoLo-CAM: Class Activation Mapping for Object Co-Localization in Weakly-Labeled Unconstrained Videos

    Full text link
    Weakly supervised video object localization (WSVOL) methods often rely on visual and motion cues only, making them susceptible to inaccurate localization. Recently, discriminative models have been explored using a temporal class activation mapping (CAM) method. Although their results are promising, objects are assumed to have limited movement from frame to frame, leading to degradation in performance for relatively long-term dependencies. In this paper, a novel CoLo-CAM method for WSVOL is proposed that leverages spatiotemporal information in activation maps during training without making assumptions about object position. Given a sequence of frames, explicit joint learning of localization is produced based on color cues across these maps, by assuming that an object has similar color across adjacent frames. CAM activations are constrained to respond similarly over pixels with similar colors, achieving co-localization. This joint learning creates direct communication among pixels across all image locations and over all frames, allowing for transfer, aggregation, and correction of learned localization, leading to better localization performance. This is achieved by minimizing the color term of a conditional random field (CRF) loss over a sequence of frames/CAMs. Empirical experiments on two challenging datasets with unconstrained videos, YouTube-Objects, show the merits of our method, and its robustness to long-term dependencies, leading to new state-of-the-art performance for WSVOL.Comment: 16 pages, 8 figure
    corecore