44 research outputs found

    Weakly- and Semi-Supervised Panoptic Segmentation

    Full text link
    We present a weakly supervised model that jointly performs both semantic- and instance-segmentation -- a particularly relevant problem given the substantial cost of obtaining pixel-perfect annotation for these tasks. In contrast to many popular instance segmentation approaches based on object detectors, our method does not predict any overlapping instances. Moreover, we are able to segment both "thing" and "stuff" classes, and thus explain all the pixels in the image. "Thing" classes are weakly-supervised with bounding boxes, and "stuff" with image-level tags. We obtain state-of-the-art results on Pascal VOC, for both full and weak supervision (which achieves about 95% of fully-supervised performance). Furthermore, we present the first weakly-supervised results on Cityscapes for both semantic- and instance-segmentation. Finally, we use our weakly supervised framework to analyse the relationship between annotation quality and predictive performance, which is of interest to dataset creators.Comment: ECCV 2018. The first two authors contributed equall

    Budget-aware Semi-Supervised Semantic and Instance Segmentation

    Get PDF
    Methods that move towards less supervised scenarios are key for image segmentation, as dense labels demand significant human intervention. Generally, the annotation burden is mitigated by labeling datasets with weaker forms of supervision, e.g. image-level labels or bounding boxes. Another option are semi-supervised settings, that commonly leverage a few strong annotations and a huge number of unlabeled/weakly-labeled data. In this paper, we revisit semi-supervised segmentation schemes and narrow down significantly the annotation budget (in terms of total labeling time of the training set) compared to previous approaches. With a very simple pipeline, we demonstrate that at low annotation budgets, semi-supervised methods outperform by a wide margin weakly-supervised ones for both semantic and instance segmentation. Our approach also outperforms previous semi-supervised works at a much reduced labeling cost. We present results for the Pascal VOC benchmark and unify weakly and semi-supervised approaches by considering the total annotation budget, thus allowing a fairer comparison between methods.Comment: To appear in CVPR-W 2019 (DeepVision workshop

    Harvesting Information from Captions for Weakly Supervised Semantic Segmentation

    Full text link
    Since acquiring pixel-wise annotations for training convolutional neural networks for semantic image segmentation is time-consuming, weakly supervised approaches that only require class tags have been proposed. In this work, we propose another form of supervision, namely image captions as they can be found on the Internet. These captions have two advantages. They do not require additional curation as it is the case for the clean class tags used by current weakly supervised approaches and they provide textual context for the classes present in an image. To leverage such textual context, we deploy a multi-modal network that learns a joint embedding of the visual representation of the image and the textual representation of the caption. The network estimates text activation maps (TAMs) for class names as well as compound concepts, i.e. combinations of nouns and their attributes. The TAMs of compound concepts describing classes of interest substantially improve the quality of the estimated class activation maps which are then used to train a network for semantic segmentation. We evaluate our method on the COCO dataset where it achieves state of the art results for weakly supervised image segmentation

    Cumulo: A Dataset for Learning Cloud Classes

    Full text link
    One of the greatest sources of uncertainty in future climate projections comes from limitations in modelling clouds and in understanding how different cloud types interact with the climate system. A key first step in reducing this uncertainty is to accurately classify cloud types at high spatial and temporal resolution. In this paper, we introduce Cumulo, a benchmark dataset for training and evaluating global cloud classification models. It consists of one year of 1km resolution MODIS hyperspectral imagery merged with pixel-width 'tracks' of CloudSat cloud labels. Bringing these complementary datasets together is a crucial first step, enabling the Machine-Learning community to develop innovative new techniques which could greatly benefit the Climate community. To showcase Cumulo, we provide baseline performance analysis using an invertible flow generative model (IResNet), which further allows us to discover new sub-classes for a given cloud class by exploring the latent space. To compare methods, we introduce a set of evaluation criteria, to identify models that are not only accurate, but also physically-realistic. CUMULO can be download from https://www.dropbox.com/sh/6gca7f0mb3b0ikz/AADq2lk4u7k961Qa31FwIDEpa?dl=0
    corecore