12 research outputs found

    Seed, Expand and Constrain: Three Principles for Weakly-Supervised Image Segmentation

    Full text link
    We introduce a new loss function for the weakly-supervised training of semantic image segmentation models based on three guiding principles: to seed with weak localization cues, to expand objects based on the information about which classes can occur in an image, and to constrain the segmentations to coincide with object boundaries. We show experimentally that training a deep convolutional neural network using the proposed loss function leads to substantially better segmentations than previous state-of-the-art methods on the challenging PASCAL VOC 2012 dataset. We furthermore give insight into the working mechanism of our method by a detailed experimental study that illustrates how the segmentation quality is affected by each term of the proposed loss function as well as their combinations.Comment: ECCV 201

    Towards Supporting Visual Question and Answering Applications

    Get PDF
    abstract: Visual Question Answering (VQA) is a new research area involving technologies ranging from computer vision, natural language processing, to other sub-fields of artificial intelligence such as knowledge representation. The fundamental task is to take as input one image and one question (in text) related to the given image, and to generate a textual answer to the input question. There are two key research problems in VQA: image understanding and the question answering. My research mainly focuses on developing solutions to support solving these two problems. In image understanding, one important research area is semantic segmentation, which takes images as input and output the label of each pixel. As much manual work is needed to label a useful training set, typical training sets for such supervised approaches are always small. There are also approaches with relaxed labeling requirement, called weakly supervised semantic segmentation, where only image-level labels are needed. With the development of social media, there are more and more user-uploaded images available on-line. Such user-generated content often comes with labels like tags and may be coarsely labelled by various tools. To use these information for computer vision tasks, I propose a new graphic model by considering the neighborhood information and their interactions to obtain the pixel-level labels of the images with only incomplete image-level labels. The method was evaluated on both synthetic and real images. In question answering, my research centers on best answer prediction, which addressed two main research topics: feature design and model construction. In the feature design part, most existing work discussed how to design effective features for answer quality / best answer prediction. However, little work mentioned how to design features by considering the relationship between answers of one given question. To fill this research gap, I designed new features to help improve the prediction performance. In the modeling part, to employ the structure of the feature space, I proposed an innovative learning-to-rank model by considering the hierarchical lasso. Experiments with comparison with the state-of-the-art in the best answer prediction literature have confirmed that the proposed methods are effective and suitable for solving the research task.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    IST Austria Thesis

    Get PDF
    Modern computer vision systems heavily rely on statistical machine learning models, which typically require large amounts of labeled data to be learned reliably. Moreover, very recently computer vision research widely adopted techniques for representation learning, which further increase the demand for labeled data. However, for many important practical problems there is relatively small amount of labeled data available, so it is problematic to leverage full potential of the representation learning methods. One way to overcome this obstacle is to invest substantial resources into producing large labelled datasets. Unfortunately, this can be prohibitively expensive in practice. In this thesis we focus on the alternative way of tackling the aforementioned issue. We concentrate on methods, which make use of weakly-labeled or even unlabeled data. Specifically, the first half of the thesis is dedicated to the semantic image segmentation task. We develop a technique, which achieves competitive segmentation performance and only requires annotations in a form of global image-level labels instead of dense segmentation masks. Subsequently, we present a new methodology, which further improves segmentation performance by leveraging tiny additional feedback from a human annotator. By using our methods practitioners can greatly reduce the amount of data annotation effort, which is required to learn modern image segmentation models. In the second half of the thesis we focus on methods for learning from unlabeled visual data. We study a family of autoregressive models for modeling structure of natural images and discuss potential applications of these models. Moreover, we conduct in-depth study of one of these applications, where we develop the state-of-the-art model for the probabilistic image colorization task
    corecore