1,631 research outputs found

    Multimodal Visual Concept Learning with Weakly Supervised Techniques

    Full text link
    Despite the availability of a huge amount of video data accompanied by descriptive texts, it is not always easy to exploit the information contained in natural language in order to automatically recognize video concepts. Towards this goal, in this paper we use textual cues as means of supervision, introducing two weakly supervised techniques that extend the Multiple Instance Learning (MIL) framework: the Fuzzy Sets Multiple Instance Learning (FSMIL) and the Probabilistic Labels Multiple Instance Learning (PLMIL). The former encodes the spatio-temporal imprecision of the linguistic descriptions with Fuzzy Sets, while the latter models different interpretations of each description's semantics with Probabilistic Labels, both formulated through a convex optimization algorithm. In addition, we provide a novel technique to extract weak labels in the presence of complex semantics, that consists of semantic similarity computations. We evaluate our methods on two distinct problems, namely face and action recognition, in the challenging and realistic setting of movies accompanied by their screenplays, contained in the COGNIMUSE database. We show that, on both tasks, our method considerably outperforms a state-of-the-art weakly supervised approach, as well as other baselines.Comment: CVPR 201

    An Effective Technique for Removal of Facial Dupilcation by SBFA

    Get PDF
    Search based face annotation (SBFA) is an effective technique to annotate the weakly labeled facial images that are freely available on World Wide Web. The main objective of search based face annotation is to assign correct name labels to given query facial image. One difficult drawback for search based face annotation theme is how to effectively perform annotation by exploiting the list of most similar facial pictures and their weak labels that square measure typically droning and incomplete. To tackle this drawback, we tend to propose a good unattended label refinement (URL) approach for purification the labels of web facial pictures exploitation machine learning technique. We tend to formulate the educational drawback as a gibbose improvement and develop effective improvement algorithms to resolve the large scale learning task expeditiously. To additional speed up the projected theme, we also proposed clustering based approximation algorithmic program which may improve quantify ability significantly. We have conducted an in depth set of empirical studies on a large scale net facial image test bed, within which encouraging results showed that the projected URL algorithms will considerably boost the performance of the promising SBFA theme. In future work we will use HAAR algorithm. HAAR is feature based method for face detection. HAAR features, integral images, recognized detection of features improve face detection in terms of speed and accuracy. DOI: 10.17762/ijritcc2321-8169.150517

    TAG ME: An Accurate Name Tagging System for Web Facial Images using Search-Based Face Annotation

    Get PDF
    Now a day the demand of social media is increases rapidly and most of the part of social media is made up of multimedia content cognate as images, audio, video. Hence for taking this as a motivation we have proffer a framework for Name tagging or labeling For Web Facial Images, which are easily obtainable on the internet. TAG ME system does that name tagging by utilizing search-based face annotation (SBFA). Here we are going to select an image from a database which are weakly labeled on the internet and the "TAG ME" assign a correct and accurate names or tags to that facial image, for doing this a few challenges have to be faced the One exigent difficulty for search-based face annotation strategy is how to effectually conduct annotation by utilizing the list of nearly all identical face images and its labels which is weak that are habitually rowdy and deficient. In TAGME we have resolve this problem by utilizing an effectual semi supervised label refinement (SSLR) method for purify the labels of web and nonweb facial images with the help of machine learning techniques. Secondly we used convex optimization techniques to resolve learning problem and used effectual optimization algorithms to resolve the learning task which is based on the large scale integration productively. For additionally quicken the given system, finally TAGME system proposed clustering-based approximation algorithm which boost the scalability considerably

    Learning from Partial Labels

    Get PDF
    We address the problem of partially-labeled multiclass classification, where instead of a single label per instance, the algorithm is given a candidate set of labels, only one of which is correct. Our setting is motivated by a common scenario in many image and video collections, where only partial access to labels is available. The goal is to learn a classifier that can disambiguate the partially-labeled training instances, and generalize to unseen data. We define an intuitive property of the data distribution that sharply characterizes the ability to learn in this setting and show that effective learning is possible even when all the data is only partially labeled. Exploiting this property of the data, we propose a convex learning formulation based on minimization of a loss function appropriate for the partial label setting. We analyze the conditions under which our loss function is asymptotically consistent, as well as its generalization and transductive performance. We apply our framework to identifying faces culled from web news sources and to naming characters in TV series and movies; in particular, we annotated and experimented on a very large video data set and achieve 6% error for character naming on 16 episodes of the TV series Lost
    • …
    corecore