763 research outputs found

    Unsupervised Learning Facial Parameter Regressor for Action Unit Intensity Estimation via Differentiable Renderer

    Full text link
    Facial action unit (AU) intensity is an index to describe all visually discernible facial movements. Most existing methods learn intensity estimator with limited AU data, while they lack generalization ability out of the dataset. In this paper, we present a framework to predict the facial parameters (including identity parameters and AU parameters) based on a bone-driven face model (BDFM) under different views. The proposed framework consists of a feature extractor, a generator, and a facial parameter regressor. The regressor can fit the physical meaning parameters of the BDFM from a single face image with the help of the generator, which maps the facial parameters to the game-face images as a differentiable renderer. Besides, identity loss, loopback loss, and adversarial loss can improve the regressive results. Quantitative evaluations are performed on two public databases BP4D and DISFA, which demonstrates that the proposed method can achieve comparable or better performance than the state-of-the-art methods. What's more, the qualitative results also demonstrate the validity of our method in the wild

    Human-controllable and structured deep generative models

    Get PDF
    Deep generative models are a class of probabilistic models that attempts to learn the underlying data distribution. These models are usually trained in an unsupervised way and thus, do not require any labels. Generative models such as Variational Autoencoders and Generative Adversarial Networks have made astounding progress over the last years. These models have several benefits: eased sampling and evaluation, efficient learning of low-dimensional representations for downstream tasks, and better understanding through interpretable representations. However, even though the quality of these models has improved immensely, the ability to control their style and structure is limited. Structured and human-controllable representations of generative models are essential for human-machine interaction and other applications, including fairness, creativity, and entertainment. This thesis investigates learning human-controllable and structured representations with deep generative models. In particular, we focus on generative modelling of 2D images. For the first part, we focus on learning clustered representations. We propose semi-parametric hierarchical variational autoencoders to estimate the intensity of facial action units. The semi-parametric model forms a hybrid generative-discriminative model and leverages both parametric Variational Autoencoder and non-parametric Gaussian Process autoencoder. We show superior performance in comparison with existing facial action unit estimation approaches. Based on the results and analysis of the learned representation, we focus on learning Mixture-of-Gaussians representations in an autoencoding framework. We deviate from the conventional autoencoding framework and consider a regularized objective with the Cauchy-Schwarz divergence. The Cauchy-Schwarz divergence allows a closed-form solution for Mixture-of-Gaussian distributions and, thus, efficiently optimizing the autoencoding objective. We show that our model outperforms existing Variational Autoencoders in density estimation, clustering, and semi-supervised facial action detection. We focus on learning disentangled representations for conditional generation and fair facial attribute classification for the second part. Conditional image generation relies on the accessibility to large-scale annotated datasets. Nevertheless, the geometry of visual objects, such as in faces, cannot be learned implicitly and deteriorate image fidelity. We propose incorporating facial landmarks with a statistical shape model and a differentiable piecewise affine transformation to separate the representation for appearance and shape. The goal of incorporating facial landmarks is that generation is controlled and can separate different appearances and geometries. In our last work, we use weak supervision for disentangling groups of variations. Works on learning disentangled representation have been done in an unsupervised fashion. However, recent works have shown that learning disentangled representations is not identifiable without any inductive biases. Since then, there has been a shift towards weakly-supervised disentanglement learning. We investigate using regularization based on the Kullback-Leiber divergence to disentangle groups of variations. The goal is to have consistent and separated subspaces for different groups, e.g., for content-style learning. Our evaluation shows increased disentanglement abilities and competitive performance for image clustering and fair facial attribute classification with weak supervision compared to supervised and semi-supervised approaches.Open Acces

    Adversarial Training in Affective Computing and Sentiment Analysis: Recent Advances and Perspectives

    Get PDF
    Over the past few years, adversarial training has become an extremely active research topic and has been successfully applied to various Artificial Intelligence (AI) domains. As a potentially crucial technique for the development of the next generation of emotional AI systems, we herein provide a comprehensive overview of the application of adversarial training to affective computing and sentiment analysis. Various representative adversarial training algorithms are explained and discussed accordingly, aimed at tackling diverse challenges associated with emotional AI systems. Further, we highlight a range of potential future research directions. We expect that this overview will help facilitate the development of adversarial training for affective computing and sentiment analysis in both the academic and industrial communities
    • …
    corecore