488 research outputs found

    Move Forward and Tell: A Progressive Generator of Video Descriptions

    Full text link
    We present an efficient framework that can generate a coherent paragraph to describe a given video. Previous works on video captioning usually focus on video clips. They typically treat an entire video as a whole and generate the caption conditioned on a single embedding. On the contrary, we consider videos with rich temporal structures and aim to generate paragraph descriptions that can preserve the story flow while being coherent and concise. Towards this goal, we propose a new approach, which produces a descriptive paragraph by assembling temporally localized descriptions. Given a video, it selects a sequence of distinctive clips and generates sentences thereon in a coherent manner. Particularly, the selection of clips and the production of sentences are done jointly and progressively driven by a recurrent network -- what to describe next depends on what have been said before. Here, the recurrent network is learned via self-critical sequence training with both sentence-level and paragraph-level rewards. On the ActivityNet Captions dataset, our method demonstrated the capability of generating high-quality paragraph descriptions for videos. Compared to those by other methods, the descriptions produced by our method are often more relevant, more coherent, and more concise.Comment: Accepted by ECCV 201

    TAPER-WE: Transformer-Based Model Attention with Relative Position Encoding and Word Embedding for Video Captioning and Summarization in Dense Environment

    Get PDF
    In the era of burgeoning digital content, the need for automated video captioning and summarization in dense environments has become increasingly critical. This paper introduces TAPER-WE, a novel methodology for enhancing the performance of these tasks through the integration of state-of-the-art techniques. TAPER-WE leverages the power of Transformer-based models, incorporating advanced features such as Relative Position Encoding and Word Embedding. Our approach demonstrates substantial advancements in the domain of video captioning. By harnessing the contextual understanding abilities of Transformers, TAPER-WE excels in generating descriptive and contextually coherent captions for video frames. Furthermore, it provides a highly effective summarization mechanism, condensing lengthy videos into concise, informative summaries. One of the key innovations of TAPER-WE lies in its utilization of Relative Position Encoding, enabling the model to grasp temporal relationships within video sequences. This fosters accurate alignment between video frames and generated captions, resulting in superior captioning quality. Additionally, Word Embedding techniques enhance the model's grasp of semantics, enabling it to produce captions and summaries that are not only coherent but also linguistically rich. To validate the effectiveness of our proposed approach, we conducted extensive experiments on benchmark datasets, demonstrating significant improvements in captioning accuracy and summarization quality compared to existing methods. TAPER-WE not only achieves state-of-the-art performance but also showcases its adaptability and generalizability across a wide range of video content. In conclusion, TAPER-WE represents a substantial leap forward in the field of video captioning and summarization. Its amalgamation of Transformer-based architecture, Relative Position Encoding, and Word Embedding empowers it to produce captions and summaries that are not only informative but also contextually aware, addressing the growing need for efficient content understanding in the digital age
    • …
    corecore