6,038 research outputs found

    Primary Facets Of Order Polytopes

    Full text link
    Mixture models on order relations play a central role in recent investigations of transitivity in binary choice data. In such a model, the vectors of choice probabilities are the convex combinations of the characteristic vectors of all order relations of a chosen type. The five prominent types of order relations are linear orders, weak orders, semiorders, interval orders and partial orders. For each of them, the problem of finding a complete, workable characterization of the vectors of probabilities is crucial---but it is reputably inaccessible. Under a geometric reformulation, the problem asks for a linear description of a convex polytope whose vertices are known. As for any convex polytope, a shortest linear description comprises one linear inequality per facet. Getting all of the facet-defining inequalities of any of the five order polytopes seems presently out of reach. Here we search for the facet-defining inequalities which we call primary because their coefficients take only the values -1, 0 or 1. We provide a classification of all primary, facet-defining inequalities of three of the five order polytopes. Moreover, we elaborate on the intricacy of the primary facet-defining inequalities of the linear order and the weak order polytopes

    Brick polytopes, lattice quotients, and Hopf algebras

    Get PDF
    This paper is motivated by the interplay between the Tamari lattice, J.-L. Loday's realization of the associahedron, and J.-L. Loday and M. Ronco's Hopf algebra on binary trees. We show that these constructions extend in the world of acyclic kk-triangulations, which were already considered as the vertices of V. Pilaud and F. Santos' brick polytopes. We describe combinatorially a natural surjection from the permutations to the acyclic kk-triangulations. We show that the fibers of this surjection are the classes of the congruence ≡k\equiv^k on Sn\mathfrak{S}_n defined as the transitive closure of the rewriting rule UacV1b1⋯VkbkW≡kUcaV1b1⋯VkbkWU ac V_1 b_1 \cdots V_k b_k W \equiv^k U ca V_1 b_1 \cdots V_k b_k W for letters a<b1,…,bk<ca < b_1, \dots, b_k < c and words U,V1,…,Vk,WU, V_1, \dots, V_k, W on [n][n]. We then show that the increasing flip order on kk-triangulations is the lattice quotient of the weak order by this congruence. Moreover, we use this surjection to define a Hopf subalgebra of C. Malvenuto and C. Reutenauer's Hopf algebra on permutations, indexed by acyclic kk-triangulations, and to describe the product and coproduct in this algebra and its dual in term of combinatorial operations on acyclic kk-triangulations. Finally, we extend our results in three directions, describing a Cambrian, a tuple, and a Schr\"oder version of these constructions.Comment: 59 pages, 32 figure

    Posets arising as 1-skeleta of simple polytopes, the nonrevisiting path conjecture, and poset topology

    Full text link
    Given any polytope PP and any generic linear functional c{\bf c} , one obtains a directed graph G(P,c)G(P,{\bf c}) by taking the 1-skeleton of PP and orienting each edge e(u,v)e(u,v) from uu to vv for c(u)<c(v){\bf c} (u) < {\bf c} ( v). This paper raises the question of finding sufficient conditions on a polytope PP and generic cost vector c{\bf c} so that the graph G(P,c)G(P, {\bf c} ) will not have any directed paths which revisit any face of PP after departing from that face. This is in a sense equivalent to the question of finding conditions on PP and c{\bf c} under which the simplex method for linear programming will be efficient under all choices of pivot rules. Conditions on PP and c{\bf c} are given which provably yield a corollary of the desired face nonrevisiting property and which are conjectured to give the desired property itself. This conjecture is proven for 3-polytopes and for spindles having the two distinguished vertices as source and sink; this shows that known counterexamples to the Hirsch Conjecture will not provide counterexamples to this conjecture. A part of the proposed set of conditions is that G(P,c)G(P, {\bf c} ) be the Hasse diagram of a partially ordered set, which is equivalent to requiring non revisiting of 1-dimensional faces. This opens the door to the usage of poset-theoretic techniques. This work also leads to a result for simple polytopes in which G(P,c)G(P, {\bf c}) is the Hasse diagram of a lattice L that the order complex of each open interval in L is homotopy equivalent to a ball or a sphere of some dimension. Applications are given to the weak Bruhat order, the Tamari lattice, and more generally to the Cambrian lattices, using realizations of the Hasse diagrams of these posets as 1-skeleta of permutahedra, associahedra, and generalized associahedra.Comment: new results for 3-polytopes and spindles added; exposition substantially improved throughou

    Many projectively unique polytopes

    Full text link
    We construct an infinite family of 4-polytopes whose realization spaces have dimension smaller or equal to 96. This in particular settles a problem going back to Legendre and Steinitz: whether and how the dimension of the realization space of a polytope is determined/bounded by its f-vector. From this, we derive an infinite family of combinatorially distinct 69-dimensional polytopes whose realization is unique up to projective transformation. This answers a problem posed by Perles and Shephard in the sixties. Moreover, our methods naturally lead to several interesting classes of projectively unique polytopes, among them projectively unique polytopes inscribed to the sphere. The proofs rely on a novel construction technique for polytopes based on solving Cauchy problems for discrete conjugate nets in S^d, a new Alexandrov--van Heijenoort Theorem for manifolds with boundary and a generalization of Lawrence's extension technique for point configurations.Comment: 44 pages, 18 figures; to appear in Invent. mat
    • …
    corecore