15 research outputs found

    Weak Fourier-Schur sampling, the hidden subgroup problem, and the quantum collision problem

    Get PDF
    Schur duality decomposes many copies of a quantum state into subspaces labeled by partitions, a decomposition with applications throughout quantum information theory. Here we consider applying Schur duality to the problem of distinguishing coset states in the standard approach to the hidden subgroup problem. We observe that simply measuring the partition (a procedure we call weak Schur sampling) provides very little information about the hidden subgroup. Furthermore, we show that under quite general assumptions, even a combination of weak Fourier sampling and weak Schur sampling fails to identify the hidden subgroup. We also prove tight bounds on how many coset states are required to solve the hidden subgroup problem by weak Schur sampling, and we relate this question to a quantum version of the collision problem.Comment: 21 page

    Symmetric functions of qubits in an unknown basis

    Full text link
    Consider an n qubit computational basis state corresponding to a bit string x, which has had an unknown local unitary applied to each qubit, and whose qubits have been reordered by an unknown permutation. We show that, given such a state with Hamming weight |x| at most n/2, it is possible to reconstruct |x| with success probability 1 - |x|/(n-|x|+1), and thus to compute any symmetric function of x. We give explicit algorithms for computing whether or not |x| is at least t for some t, and for computing the parity of x, and show that these are essentially optimal. These results can be seen as generalisations of the swap test for comparing quantum states.Comment: 6 pages, 3 figures; v2: improved results, essentially published versio

    Quantum Pseudoentanglement

    Full text link
    Quantum pseudorandom states are efficiently constructable states which nevertheless masquerade as Haar-random states to poly-time observers. First defined by Ji, Liu and Song, such states have found a number of applications ranging from cryptography to the AdS/CFT correspondence. A fundamental question is exactly how much entanglement is required to create such states. Haar-random states, as well as tt-designs for t2t\geq 2, exhibit near-maximal entanglement. Here we provide the first construction of pseudorandom states with only polylogarithmic entanglement entropy across an equipartition of the qubits, which is the minimum possible. Our construction can be based on any one-way function secure against quantum attack. We additionally show that the entanglement in our construction is fully "tunable", in the sense that one can have pseudorandom states with entanglement Θ(f(n))\Theta(f(n)) for any desired function ω(logn)f(n)O(n)\omega(\log n) \leq f(n) \leq O(n). More fundamentally, our work calls into question to what extent entanglement is a "feelable" quantity of quantum systems. Inspired by recent work of Gheorghiu and Hoban, we define a new notion which we call "pseudoentanglement", which are ensembles of efficiently constructable quantum states which hide their entanglement entropy. We show such states exist in the strongest form possible while simultaneously being pseudorandom states. We also describe diverse applications of our result from entanglement distillation to property testing to quantum gravity.Comment: 32 page

    Weak Fourier-Schur Sampling, The Hidden Subgroup Problem, And The Quantum Collision Problem

    No full text
    Schur duality decomposes many copies of a quantum state into subspaces labeled by partitions, a decomposition with applications throughout quantum information theory. Here we consider applying Schur duality to the problem of distinguishing coset states in the standard approach to the hidden subgroup problem. We observe that simply measuring the partition (a procedure we call weak Schur sampling) provides very little information about the hidden subgroup. Furthermore, we show that under quite general assumptions, even a combination of weak Fourier sampling and weak Schur sampling fails to identify the hidden subgroup. We also prove tight bounds on how many coset states are required to solve the hidden subgroup problem by weak Schur sampling, and we relate this question to a quantum version of the collision problem. © Springer-Verlag Berlin Heidelberg 2007

    Quantum Spectrum Testing

    Full text link
    In this work, we study the problem of testing properties of the spectrum of a mixed quantum state. Here one is given nn copies of a mixed state ρCd×d\rho\in\mathbb{C}^{d\times d} and the goal is to distinguish whether ρ\rho's spectrum satisfies some property P\mathcal{P} or is at least ϵ\epsilon-far in 1\ell_1-distance from satisfying P\mathcal{P}. This problem was promoted in the survey of Montanaro and de Wolf under the name of testing unitarily invariant properties of mixed states. It is the natural quantum analogue of the classical problem of testing symmetric properties of probability distributions. Here, the hope is for algorithms with subquadratic copy complexity in the dimension dd. This is because the "empirical Young diagram (EYD) algorithm" can estimate the spectrum of a mixed state up to ϵ\epsilon-accuracy using only O~(d2/ϵ2)\widetilde{O}(d^2/\epsilon^2) copies. In this work, we show that given a mixed state ρCd×d\rho\in\mathbb{C}^{d\times d}: (i) Θ(d/ϵ2)\Theta(d/\epsilon^2) copies are necessary and sufficient to test whether ρ\rho is the maximally mixed state, i.e., has spectrum (1d,...,1d)(\frac1d, ..., \frac1d); (ii) Θ(r2/ϵ)\Theta(r^2/\epsilon) copies are necessary and sufficient to test with one-sided error whether ρ\rho has rank rr, i.e., has at most rr nonzero eigenvalues; (iii) Θ~(r2/Δ)\widetilde{\Theta}(r^2/\Delta) copies are necessary and sufficient to distinguish whether ρ\rho is maximally mixed on an rr-dimensional or an (r+Δ)(r+\Delta)-dimensional subspace; and (iv) The EYD algorithm requires Ω(d2/ϵ2)\Omega(d^2/\epsilon^2) copies to estimate the spectrum of ρ\rho up to ϵ\epsilon-accuracy, nearly matching the known upper bound. In addition, we simplify part of the proof of the upper bound. Our techniques involve the asymptotic representation theory of the symmetric group; in particular Kerov's algebra of polynomial functions on Young diagrams.Comment: 70 pages, 6 figure
    corecore