9,946 research outputs found

    Densities, spectral densities and modality

    Get PDF
    This paper considers the problem of specifying a simple approximating density function for a given data set (x_1,...,x_n). Simplicity is measured by the number of modes but several different definitions of approximation are introduced. The taut string method is used to control the numbers of modes and to produce candidate approximating densities. Refinements are introduced that improve the local adaptivity of the procedures and the method is extended to spectral densities.Comment: Published by the Institute of Mathematical Statistics (http://www.imstat.org) in the Annals of Statistics (http://www.imstat.org/aos/) at http://dx.doi.org/10.1214/00905360400000036

    Maximizing information on the environment by dynamically controlled qubit probes

    Get PDF
    We explore the ability of a qubit probe to characterize unknown parameters of its environment. By resorting to quantum estimation theory, we analytically find the ultimate bound on the precision of estimating key parameters of a broad class of ubiquitous environmental noises ("baths") which the qubit may probe. These include the probe-bath coupling strength, the correlation time of generic bath spectra, the power laws governing these spectra, as well as their dephasing times T2. Our central result is that by optimizing the dynamical control on the probe under realistic constraints one may attain the maximal accuracy bound on the estimation of these parameters by the least number of measurements possible. Applications of this protocol that combines dynamical control and estimation theory tools to quantum sensing are illustrated for a nitrogen-vacancy center in diamond used as a probe.Comment: 8 pages + 6 pages (appendix), 3 Figure

    Efficient adaptive integration of functions with sharp gradients and cusps in n-dimensional parallelepipeds

    Full text link
    In this paper, we study the efficient numerical integration of functions with sharp gradients and cusps. An adaptive integration algorithm is presented that systematically improves the accuracy of the integration of a set of functions. The algorithm is based on a divide and conquer strategy and is independent of the location of the sharp gradient or cusp. The error analysis reveals that for a C0C^0 function (derivative-discontinuity at a point), a rate of convergence of n+1n+1 is obtained in RnR^n. Two applications of the adaptive integration scheme are studied. First, we use the adaptive quadratures for the integration of the regularized Heaviside function---a strongly localized function that is used for modeling sharp gradients. Then, the adaptive quadratures are employed in the enriched finite element solution of the all-electron Coulomb problem in crystalline diamond. The source term and enrichment functions of this problem have sharp gradients and cusps at the nuclei. We show that the optimal rate of convergence is obtained with only a marginal increase in the number of integration points with respect to the pure finite element solution with the same number of elements. The adaptive integration scheme is simple, robust, and directly applicable to any generalized finite element method employing enrichments with sharp local variations or cusps in nn-dimensional parallelepiped elements.Comment: 22 page

    Nonparametric Beta Kernel Estimator for Long Memory Time Series

    Get PDF
    The paper introduces a new nonparametric estimator of the spectral density that is given in smoothing the periodogram by the probability density of Beta random variable (Beta kernel). The estimator is proved to be bounded for short memory data, and diverges at the origin for long memory data. The convergence in probability of the relative error and Monte Carlo simulations suggest that the estimator automaticaly adapts to the long- or the short-range dependency of the process. A cross-validation procedure is also studied in order to select the nuisance parameter of the estimator. Illustrations on historical as well as most recent returns and absolute returns of the S&P500 index show the reasonable performance of the estimation, and show that the data-driven estimator is a valuable tool for the detection of long-memory as well as hidden periodicities in stock returns.spectral density, long rage dependence, nonparametric estimation

    Optimized auxiliary oscillators for the simulation of general open quantum systems

    Full text link
    A method for the systematic construction of few-body damped harmonic oscillator networks accurately reproducing the effect of general bosonic environments in open quantum systems is presented. Under the sole assumptions of a Gaussian environment and regardless of the system coupled to it, an algorithm to determine the parameters of an equivalent set of interacting damped oscillators obeying a Markovian quantum master equation is introduced. By choosing a suitable coupling to the system and minimizing an appropriate distance between the two-time correlation function of this effective bath and that of the target environment, the error induced in the reduced dynamics of the system is brought under rigorous control. The interactions among the effective modes provide remarkable flexibility in replicating non-Markovian effects on the system even with a small number of oscillators, and the resulting Lindblad equation may therefore be integrated at a very reasonable computational cost using standard methods for Markovian problems, even in strongly non-perturbative coupling regimes and at arbitrary temperatures including zero. We apply the method to an exactly solvable problem in order to demonstrate its accuracy, and present a study based on current research in the context of coherent transport in biological aggregates as a more realistic example of its use; performance and versatility are highlighted, and theoretical and numerical advantages over existing methods, as well as possible future improvements, are discussed.Comment: 23 + 9 pages, 11 + 2 figures. No changes from previous version except publication info and updated author affiliation

    Locally Stationary Functional Time Series

    Full text link
    The literature on time series of functional data has focused on processes of which the probabilistic law is either constant over time or constant up to its second-order structure. Especially for long stretches of data it is desirable to be able to weaken this assumption. This paper introduces a framework that will enable meaningful statistical inference of functional data of which the dynamics change over time. We put forward the concept of local stationarity in the functional setting and establish a class of processes that have a functional time-varying spectral representation. Subsequently, we derive conditions that allow for fundamental results from nonstationary multivariate time series to carry over to the function space. In particular, time-varying functional ARMA processes are investigated and shown to be functional locally stationary according to the proposed definition. As a side-result, we establish a Cram\'er representation for an important class of weakly stationary functional processes. Important in our context is the notion of a time-varying spectral density operator of which the properties are studied and uniqueness is derived. Finally, we provide a consistent nonparametric estimator of this operator and show it is asymptotically Gaussian using a weaker tightness criterion than what is usually deemed necessary

    ABC-CDE: Towards Approximate Bayesian Computation with Complex High-Dimensional Data and Limited Simulations

    Full text link
    Approximate Bayesian Computation (ABC) is typically used when the likelihood is either unavailable or intractable but where data can be simulated under different parameter settings using a forward model. Despite the recent interest in ABC, high-dimensional data and costly simulations still remain a bottleneck in some applications. There is also no consensus as to how to best assess the performance of such methods without knowing the true posterior. We show how a nonparametric conditional density estimation (CDE) framework, which we refer to as ABC-CDE, help address three nontrivial challenges in ABC: (i) how to efficiently estimate the posterior distribution with limited simulations and different types of data, (ii) how to tune and compare the performance of ABC and related methods in estimating the posterior itself, rather than just certain properties of the density, and (iii) how to efficiently choose among a large set of summary statistics based on a CDE surrogate loss. We provide theoretical and empirical evidence that justify ABC-CDE procedures that {\em directly} estimate and assess the posterior based on an initial ABC sample, and we describe settings where standard ABC and regression-based approaches are inadequate

    Nonparametric Beta Kernel Estimator for Long Memory Time Series

    Get PDF
    The paper introduces a new nonparametric estimator of the spectral density that is given in smoothing the periodogram by the probability density of Beta random variable (Beta kernel). The estimator is proved to be bounded for short memory data, and diverges at the origin for long memory data. The convergence in probability of the relative error and Monte Carlo simulations suggest that the estimator automaticaly adapts to the long- or the short-range dependency of the process. A cross-validation procedure is also studied in order to select the nuisance parameter of the estimator. Illustrations on historical as well as most recent returns and absolute returns of the S&P500 index show the reasonable performance of the estimation, and show that the data-driven estimator is a valuable tool for the detection of long-memory as well as hidden periodicities in stock returns
    corecore