4 research outputs found

    Design, testing and validation of model predictive control for an unmanned ground vehicle

    Full text link
    The rapid increase in designing, manufacturing, and using autonomous robots has attracted numerous researchers and industries in recent decades. The logical motivation behind this interest is the wide range of applications. For instance, perimeter surveillance, search and rescue missions, agriculture, and construction. In this thesis, motion planning and control based on model predictive control (MPC) for unmanned ground vehicles (UGVs) is tackled. In addition, different variants of MPC are designed, analysed, and implemented for such non-holonomic systems. It is imperative to focus on the ability of MPC to handle constraints as one of the motivations. Furthermore, the proliferation of computer processing enables these systems to work in a real-time scenario. The controller's responsibility is to guarantee an accurate trajectory tracking process to deal with other specifications usually not considered or solved by the planner. However, the separation between planner and controller is not necessarily defined uniquely, even though it can be a hybrid process, as seen in part of this thesis. Firstly, a robust MPC is designed and implemented for a small-scale autonomous bulldozer in the presence of uncertainties, which uses an optimal control action and a feed-forward controller to suppress these uncertainties. More precisely, a linearised variant of MPC is deployed to solve the trajectory tracking problem of the vehicle. Afterwards, a nonlinear MPC is designed and implemented to solve the path-following problem of the UGV for masonry in a construction context, where longitudinal velocity and yaw rate are employed as control inputs to the platform. For both the control techniques, several experiments are performed to validate the robustness and accuracy of the proposed scheme. Those experiments are performed under realistic localisation accuracy, provided by a typical localiser. Most conspicuously, a novel proximal planning and control strategy is implemented in the presence of skid-slip and dynamic and static collision avoidance for the posture control and tracking control problems. The ability to operate in moving objects is critical for UGVs to function well. The approach offers specific planning capabilities, able to deal at high frequency with context characteristics, which the higher-level planner may not well solve. Those context characteristics are related to dynamic objects and other terrain details detected by the platform's onboard perception capabilities. In the control context, proximal and interior-point optimisation methods are used for MPC. Relevant attention is given to the processing time required by the MPC process to obtain the control actions at each actual control time. This concern is due to the need to optimise each control action, which must be calculated and applied in real-time. Because the length of a prediction horizon is critical in practical applications, it is worth looking into in further detail. In another study, the accuracies of robust and nonlinear model predictive controllers are compared. Finally, a hybrid controller is proposed and implemented. This approach exploits the availability of a simplified cost-to-go function (which is provided by a higher-level planner); thus, the hybrid approach fuses, in real-time, the nominal CTG function (nominal terrain map) with the rest of the critical constraints, which the planner usually ignores. The conducted research fills necessary gaps in the application areas of MPC and UGVs. Both theoretical and practical contributions have been made in this thesis. Moreover, extensive simulations and experiments are performed to test and verify the working of MPC with a reasonable processing capability of the onboard process

    Aerial Vehicles

    Get PDF
    This book contains 35 chapters written by experts in developing techniques for making aerial vehicles more intelligent, more reliable, more flexible in use, and safer in operation.It will also serve as an inspiration for further improvement of the design and application of aeral vehicles. The advanced techniques and research described here may also be applicable to other high-tech areas such as robotics, avionics, vetronics, and space

    Advanced Trends in Wireless Communications

    Get PDF
    Physical limitations on wireless communication channels impose huge challenges to reliable communication. Bandwidth limitations, propagation loss, noise and interference make the wireless channel a narrow pipe that does not readily accommodate rapid flow of data. Thus, researches aim to design systems that are suitable to operate in such channels, in order to have high performance quality of service. Also, the mobility of the communication systems requires further investigations to reduce the complexity and the power consumption of the receiver. This book aims to provide highlights of the current research in the field of wireless communications. The subjects discussed are very valuable to communication researchers rather than researchers in the wireless related areas. The book chapters cover a wide range of wireless communication topics

    Social work with airports passengers

    Get PDF
    Social work at the airport is in to offer to passengers social services. The main methodological position is that people are under stress, which characterized by a particular set of characteristics in appearance and behavior. In such circumstances passenger attracts in his actions some attention. Only person whom he trusts can help him with the documents or psychologically
    corecore