6 research outputs found

    A comparative study of DCT- and wavelet-based image coding

    Full text link

    A family of stereoscopic image compression algorithms using wavelet transforms

    Get PDF
    With the standardization of JPEG-2000, wavelet-based image and video compression technologies are gradually replacing the popular DCT-based methods. In parallel to this, recent developments in autostereoscopic display technology is now threatening to revolutionize the way in which consumers are used to enjoying the traditional 2D display based electronic media such as television, computer and movies. However, due to the two-fold bandwidth/storage space requirement of stereoscopic imaging, an essential requirement of a stereo imaging system is efficient data compression. In this thesis, seven wavelet-based stereo image compression algorithms are proposed, to take advantage of the higher data compaction capability and better flexibility of wavelets. In the proposed CODEC I, block-based disparity estimation/compensation (DE/DC) is performed in pixel domain. However, this results in an inefficiency when DWT is applied on the whole predictive error image that results from the DE process. This is because of the existence of artificial block boundaries between error blocks in the predictive error image. To overcome this problem, in the remaining proposed CODECs, DE/DC is performed in the wavelet domain. Due to the multiresolution nature of the wavelet domain, two methods of disparity estimation and compensation have been proposed. The first method is performing DEJDC in each subband of the lowest/coarsest resolution level and then propagating the disparity vectors obtained to the corresponding subbands of higher/finer resolution. Note that DE is not performed in every subband due to the high overhead bits that could be required for the coding of disparity vectors of all subbands. This method is being used in CODEC II. In the second method, DEJDC is performed m the wavelet-block domain. This enables disparity estimation to be performed m all subbands simultaneously without increasing the overhead bits required for the coding disparity vectors. This method is used by CODEC III. However, performing disparity estimation/compensation in all subbands would result in a significant improvement of CODEC III. To further improve the performance of CODEC ill, pioneering wavelet-block search technique is implemented in CODEC IV. The pioneering wavelet-block search technique enables the right/predicted image to be reconstructed at the decoder end without the need of transmitting the disparity vectors. In proposed CODEC V, pioneering block search is performed in all subbands of DWT decomposition which results in an improvement of its performance. Further, the CODEC IV and V are able to perform at very low bit rates(< 0.15 bpp). In CODEC VI and CODEC VII, Overlapped Block Disparity Compensation (OBDC) is used with & without the need of coding disparity vector. Our experiment results showed that no significant coding gains could be obtained for these CODECs over CODEC IV & V. All proposed CODECs m this thesis are wavelet-based stereo image coding algorithms that maximise the flexibility and benefits offered by wavelet transform technology when applied to stereo imaging. In addition the use of a baseline-JPEG coding architecture would enable the easy adaptation of the proposed algorithms within systems originally built for DCT-based coding. This is an important feature that would be useful during an era where DCT-based technology is only slowly being phased out to give way for DWT based compression technology. In addition, this thesis proposed a stereo image coding algorithm that uses JPEG-2000 technology as the basic compression engine. The proposed CODEC, named RASTER is a rate scalable stereo image CODEC that has a unique ability to preserve the image quality at binocular depth boundaries, which is an important requirement in the design of stereo image CODEC. The experimental results have shown that the proposed CODEC is able to achieve PSNR gains of up to 3.7 dB as compared to directly transmitting the right frame using JPEG-2000

    A family of stereoscopic image compression algorithms using wavelet transforms

    Get PDF
    With the standardization of JPEG-2000, wavelet-based image and video compression technologies are gradually replacing the popular DCT-based methods. In parallel to this, recent developments in autostereoscopic display technology is now threatening to revolutionize the way in which consumers are used to enjoying the traditional 2-D display based electronic media such as television, computer and movies. However, due to the two-fold bandwidth/storage space requirement of stereoscopic imaging, an essential requirement of a stereo imaging system is efficient data compression. In this thesis, seven wavelet-based stereo image compression algorithms are proposed, to take advantage of the higher data compaction capability and better flexibility of wavelets. [Continues.

    Transmission of compressed images over power line channel

    Get PDF
    In the telecommunications industry, the use of existing power lines has drawn the attention of many researchers in the recent years. PLC suffers from impulsive noise that can affect data transmission by causing bit or burst errors. In this thesis, PLC channel was used as a transmission scheme to transmit compressed still images using FFT-OFDM. When lossy compression is applied to an image, a small loss of quality in the compressed image is tolerated. One of the challenging tasks in image compression and transmission is the trade-off between compression ratio and image quality. Therefore, we utilized the latest developments in quality assessment techniques, SSIM, to adaptively optimize this trade-off to the type of image application which the compression is being used for. A comparison between different compression techniques, namely, discrete cosine transform (DCT), discrete wavelet transform (DWT), and block truncation coding (BTC) was carried out. The performance criteria for our compression methods include the compression ratio, relative root-meansquared (RMS) error of the received data, and image quality evaluation via structural similarity index (SSIM). Every link in a powerline has its own attenuation profile depending on the length, layout, and cable types. Also, the influences of multipath fading due to reflections at branching point vary the attenuation profile of the link. As a result, we observed the effect of different parameters of the PLC channel based on the number of paths, and length of link on the quality of the image. Simulations showed that the image quality is highly affected by the interaction of the distance of PLC channel link and the number of multipath reflections. The PLC channel is assumed to be subjected to Gaussian and impulsive noises. There are two types of impulsive noise: asynchronous impulsive noise and periodic impulsive noise synchronous to the mains frequency. BER analysis was performed to compare the performance of the channel for the two types of impulsive noise under three impulsive scenarios. The first scenario is named as &quot;heavily disturbed&quot; and it was measured during the evening hours in a transformer substation in an industrial area. The second scenario is named as &quot;moderately disturbed&quot; and was recorded in a transformer substation in a residential area with detached and terraced houses. The third scenario is named as &quot;weakly disturbed&quot; and was recorded during night-time in an apartment located in a large building. The experiments conducted showed that both types of noise performed similarly in the three impulsive noise scenarios. We implemented Bose-Chaudhuri-Hocquenghen (BCH) coding to study the performance of Power Line Channel (PLC) impaired by impulsive noise and AWGN. BCH codes and RS codes are related and their decoding algorithms are quite similar. A comparison was made between un-coded system and BCH coding system. The performance of the system is assessed by the quality of the image for different sizes of BCH encoder, in three different impulsive environments. Simulation results showed that with BCH coding, the performance of the PLC system has improved dramatically in all three impulsive scenarios

    <title>Wavelet transforms in a JPEG-like image coder</title>

    No full text
    corecore