19 research outputs found

    SchNet: A continuous-filter convolutional neural network for modeling quantum interactions

    Get PDF
    Deep learning has the potential to revolutionize quantum chemistry as it is ideally suited to learn representations for structured data and speed up the exploration of chemical space. While convolutional neural networks have proven to be the first choice for images, audio and video data, the atoms in molecules are not restricted to a grid. Instead, their precise locations contain essential physical information, that would get lost if discretized. Thus, we propose to use continuous-filter convolutional layers to be able to model local correlations without requiring the data to lie on a grid. We apply those layers in SchNet: a novel deep learning architecture modeling quantum interactions in molecules. We obtain a joint model for the total energy and interatomic forces that follows fundamental quantum-chemical principles. This includes rotationally invariant energy predictions and a smooth, differentiable potential energy surface. Our architecture achieves state-of-the-art performance for benchmarks of equilibrium molecules and molecular dynamics trajectories. Finally, we introduce a more challenging benchmark with chemical and structural variations that suggests the path for further work

    Geometric Wavelet Scattering Networks on Compact Riemannian Manifolds

    Full text link
    The Euclidean scattering transform was introduced nearly a decade ago to improve the mathematical understanding of convolutional neural networks. Inspired by recent interest in geometric deep learning, which aims to generalize convolutional neural networks to manifold and graph-structured domains, we define a geometric scattering transform on manifolds. Similar to the Euclidean scattering transform, the geometric scattering transform is based on a cascade of wavelet filters and pointwise nonlinearities. It is invariant to local isometries and stable to certain types of diffeomorphisms. Empirical results demonstrate its utility on several geometric learning tasks. Our results generalize the deformation stability and local translation invariance of Euclidean scattering, and demonstrate the importance of linking the used filter structures to the underlying geometry of the data.Comment: 35 pages; 3 figures; 2 tables; v3: Revisions based on reviewer comment

    Generalizing Geometric Nonwindowed Scattering Transforms on Compact Riemannian Manifolds

    Full text link
    Let M\mathcal{M} be a compact, smooth, nn-dimensional Riemannian manifold without boundary. In this paper, we generalize nonwindowed geometric scattering transforms, which we formulate as Lq(M)\mathbf{L}^q(\mathcal{M}) norms of a cascade of geometric wavelet transforms and modulus operators. We then provide weighted measures for these operators, prove that these operators are well-defined under specific conditions on the manifold, invariant to the action of isometries, and stable to diffeomorphisms for λ\lambda-bandlimited functions.Comment: Initial draft. Comments welcome
    corecore