220 research outputs found

    Nanophotonics with 2D Transition Metal Dichalcogenides

    Full text link
    Two-dimensional transition metal dichalcogenides (TMDCs) have recently become attractive semiconductor materials for several optoelectronic applications, such as photodetection, light harvesting, phototransistors, light-emitting diodes, and lasers. They are particularly appealing because their bandgap lies in the visible and near-IR range, and they possess strong excitonic resonances, high oscillator strengths, and valley-selective response. Coupling these materials to optical nanocavities enhances the quantum yield of exciton emission, enabling advanced quantum optics and nanophotonic devices. Here, we review state-of-the-art advances on hybrid exciton-polariton structures based on monolayer TMDCs coupled to plasmonic and dielectric nanocavities. We first generally discuss the optical properties of 2D WS2, WSe2, MoS2 and MoSe2 materials, paying special attention to their energy and photoluminescence/absorption spectra, excitonic fine structure, and to the dynamics of exciton formation and valley depolarization. We then discuss light-matter interactions in hybrid exciton-polariton structures. Finally, we focus on weak and strong coupling regimes in monolayer TMDCs-based exciton-polariton systems, envisioning research directions and future opportunities based on this novel material platform

    Fundamental limits to optical response in absorptive systems

    Get PDF
    At visible and infrared frequencies, metals show tantalizing promise for strong subwavelength resonances, but material loss typically dampens the response. We derive fundamental limits to the optical response of absorptive systems, bounding the largest enhancements possible given intrinsic material losses. Through basic conservation-of-energy principles, we derive geometry-independent limits to per-volume absorption and scattering rates, and to local-density-of-states enhancements that represent the power radiated or expended by a dipole near a material body. We provide examples of structures that approach our absorption and scattering limits at any frequency, by contrast, we find that common "antenna" structures fall far short of our radiative LDOS bounds, suggesting the possibility for significant further improvement. Underlying the limits is a simple metric, χ2/Imχ|\chi|^2 / \operatorname{Im} \chi for a material with susceptibility χ\chi, that enables broad technological evaluation of lossy materials across optical frequencies.Comment: 21 pages and 6 figures (excluding appendices, references

    Purcell Enhancement of Parametric Luminescence: Bright and Broadband Nonlinear Light Emission in Metamaterials

    Get PDF
    Single-photon and correlated two-photon sources are important elements for optical information systems. Nonlinear downconversion light sources are robust and stable emitters of single photons and entangled photon pairs. However, the rate of downconverted light emission, dictated by the properties of low-symmetry nonlinear crystals, is typically very small, leading to significant constrains in device design and integration. In this paper, we show that the principles for spontaneous emission control (i.e. Purcell effect) of isolated emitters in nanoscale structures, such as metamaterials, can be generalized to describe the enhancement of nonlinear light generation processes such as parametric down conversion. We develop a novel theoretical framework for quantum nonlinear emission in a general anisotropic, dispersive and lossy media. We further find that spontaneous parametric downconversion in media with hyperbolic dispersion is broadband and phase-mismatch-free. We predict a 1000-fold enhancement of the downconverted emission rate with up to 105 photon pairs per second in experimentally realistic nanostructures. Our theoretical formalism and approach to Purcell enhancement of nonlinear optical processes, provides a framework for description of quantum nonlinear optical phenomena in complex nanophotonic structures.Comment: 29 pages, 10 figure

    Plasmonic Properties of Nanoparticle and Two Dimensional Material Integrated Structure

    Get PDF
    Recently, various groups have demonstrated nano-scale engineering of nanostructures for optical to infrared wavelength plasmonic applications. Most fabrication technique processes, especially those using noble metals, requires an adhesion layer. Previously proposed theoretical work to support experimental measurement often neglect the effect of the adhesion layers. The first finding of this work focuses on the impact of the adhesion layer on nanoparticle plasmonic properties. Gold nanodisks with a titanium adhesion layer are investigated by calculating the scattering, absorption, and extinction cross-section with numerical simulations using a finite difference time domain (FDTD) method. I demonstrate that a gold nanodisk with an adhesive layer significantly shifts the plasmon resonance relative to one without adhesion material. In addition, the adhesive layer also introduces stronger damping and decay time. Next, I investigate the plasmonic properties and effects of dielectric environment of black phosphorene (BP), a newly discovered anisotropic 2D material. Results suggest that the surface plasmon properties of a black phosphorene nanoribbon could be exploited to probe the efficiency of edge plasmonic enhanced absorption. Furthermore, the enhanced absorption of periodic BP nanoribbons is affected strongly by high density free carriers in BP nanoribbon geometries from mid-infrared to high infrared regime. Also when adding a thin dielectric shielding layer, such as hexagonal boron nitride, in addition to preserving the edge mode plasmonic nature of BP, it also allows for an unprecedented control of the absorption resonance energy. Finally, I also show monolayer graphene surface plasmon hybridization with hyperbolic phonon polarization local density of state of hyperbolic ferroelectric LiNbO3. The results show that the dispersion mode hybridization process is significantly regulated by a electrostatic gated single graphene and double graphene layer in addition to the ferroelectric layer size. The spontaneous emission (SE) rate the hyperbolic band contribution of LiNbO3 with graphene integrated system elucidated enhancement and inhibit spontaneous emission. Specially, the SE rate between in hybrid system is always smaller than that of the bulk in the hyperbolic band region with higher chemical potential

    Slow waves in locally resonant metamaterials line defect waveguides

    Get PDF
    In the past decades, many efforts have been devoted to the temporal manipulation of waves, especially focusing on slowing down their propagation. In electromagnetism, from microwave to optics, as well as in acoustics or for elastic waves, slow wave propagation indeed largely benefits both applied and fundamental physics. It is for instance essential in analog signal computing through the design of components such as delay lines and buffers, and it is one of the prerequisite for increased wave/matter interactions. Despite the interest of a broad community, researches have mostly been conducted in optics along with the development of wavelength scaled structured composite media, that appear promising candidates for compact slow light components. Yet their minimum structural scale prevents them from being transposed to lower frequencies where wavelengths range from sub-millimeter to meters. In this article, we propose to overcome this limitation thanks to the deep sub-wavelength scale of locally resonant metamaterials. In our approach, implemented here in the microwave regime, we show that introducing coupled resonant defects in such composite media allows the creation of deep sub-wavelength waveguides. We experimentally demonstrate that waves, while propagating in such waveguides, exhibit largely reduced group velocities. We qualitatively explain the mechanism underlying this slow wave propagation and first experimentally demonstrate, then numerically verify, how it can be taken advantage of to tune the velocity, achieving group indices ng as high as 227 over relatively large bandwidths. We conclude by highlighting the three beneficial consequences of our line defect slow wave waveguides in locally resonant metamaterials: the deep sub-wavelength scale, the very large group indices and the fact that slow wave propagation does not occur at the expense of drastic bandwidth reductions

    Transformation Optics Using Graphene: One-Atom-Thick Optical Devices Based on Graphene

    Get PDF
    Metamaterials and transformation optics have received considerable attention in the recent years, as they have found an immense role in many areas of optical science and engineering by offering schemes to control electromagnetic fields. Another area of science that has been under the spotlight for the last few years relates to exploration of graphene, which is formed of carbon atoms densely packed into a honey-comb lattice. This material exhibits unconventional electronic and optical properties, intriguing many research groups across the world including us. But our interest is mostly in studying interaction of electromagnetic waves with graphene and applications that might follow. Our group as well as few others pioneered investigating prospect of graphene for plasmonic devices and in particular plasmonic metamaterial structures and transformation optical devices. In this thesis, relying on theoretical models and numerical simulations, we show that by designing and manipulating spatially inhomogeneous, nonuniform conductivity patterns across a flake of graphene, one can have this material as a one-atom-thick platform for infrared metamaterials and transformation optical devices. Varying the graphene chemical potential by using static electric field allows for tuning the graphene conductivity in the terahertz and infrared frequencies. Such design flexibility can be exploited to create patches with differing conductivities within a single flake of graphene. Numerous photonic functions and metamaterial concepts are expected to follow from such platform. This work presents several numerical examples demonstrating these functions. Our findings show that it is possible to design one-atom-thick variant of several optical elements analogous to those in classic optics. Here we theoretically study one-atom-thick metamaterials, one-atom-thick waveguide elements, cavities, mirrors, lenses, Fourier optics and finally a few case studies illustrating transformation optics on a single sheet of graphene in mid-infrared wavelengths

    Light-matter interactions with photonic quasiparticles

    Full text link
    Interactions between light and matter play an instrumental role in many fields of science, giving rise to important applications in spectroscopy, sensing, quantum information processing, and lasers. In most of these applications, light is considered in terms of electromagnetic plane waves that propagate at the speed of light in vacuum. As a result, light-matter interactions can usually be treated as very weak, and captured at the lowest order in quantum electrodynamics (QED). However, recent progress in coupling photons to material quasiparticles (e.g., plasmons, phonons, and excitons) forces us to generalize the way we picture the photon at the core of every light-matter interaction. In this new picture, the photon, now of partly matter-character, can have greatly different polarization and dispersion, and be confined to the scale of a few nanometers. Such photonic quasiparticles enable a wealth of light-matter interaction phenomena that could not have been observed before, both in interactions with bound electrons and with free electrons. This Review focuses on exciting theoretical and experimental developments in realizing new light-matter interactions with photonic quasiparticles. As just a few examples, we discuss how photonic quasiparticles enable room-temperature strong coupling, ultrafast "forbidden transitions" in atoms, and new applications of the Cherenkov effect, as well as breakthroughs in ultrafast electron microscopy and new concepts for compact X-ray sources

    Nonradiating Photonics with Resonant Dielectric Nanostructures

    Get PDF
    Nonradiating sources of energy have traditionally been studied in quantum mechanics and astrophysics, while receiving a very little attention in the photonics community. This situation has changed recently due to a number of pioneering theoretical studies and remarkable experimental demonstrations of the exotic states of light in dielectric resonant photonic structures and metasurfaces, with the possibility to localize efficiently the electromagnetic fields of high intensities within small volumes of matter. These recent advances underpin novel concepts in nanophotonics, and provide a promising pathway to overcome the problem of losses usually associated with metals and plasmonic materials for the efficient control of the light-matter interaction at the nanoscale. This review paper provides the general background and several snapshots of the recent results in this young yet prominent research field, focusing on two types of nonradiating states of light that both have been recently at the center of many studies in all-dielectric resonant meta-optics and metasurfaces: optical {\em anapoles} and photonic {\em bound states in the continuum}. We discuss a brief history of these states in optics, their underlying physics and manifestations, and also emphasize their differences and similarities. We also review some applications of such novel photonic states in both linear and nonlinear optics for the nanoscale field enhancement, a design of novel dielectric structures with high-QQ resonances, nonlinear wave mixing and enhanced harmonic generation, as well as advanced concepts for lasing and optical neural networks.Comment: 22 pages, 9 figures, review articl
    corecore