1,295,855 research outputs found
Specific wavelength colorimeter
A self contained, specific wavelength, single beam colorimeter is described for direct spectrophotometric measurement of the concentration of a given solute in a test sample. An electrical circuit employing a photoconductive cell converts the optical output into a linear, directly readable meter output. The colorimeter is simple to operate and is adapted for use in zero gravity conditions. In a specific application, the colorimeter is designed to analyze the concentration of iodine in potable water carried aboard a space vehicle such as the 4B stage of Skylab
Optical detection and modulation at 2µm-2.5µm in silicon
Recently the 2µm wavelength region has emerged as an exciting prospect for the next generation of telecommunications. In this paper we experimentally characterise silicon based plasma dispersion effect optical modulation and defect based photodetection in the 2-2.5µm wavelength range. It is shown that the effectiveness of the plasma dispersion effect is dramatically increased in this wavelength window as compared to the traditional telecommunications wavelengths of 1.3µm and 1.55µm. Experimental results from the defect based photodetectors show that detection is achieved in the 2-2.5µm wavelength range, however the responsivity is reduced as the wavelength is increased away from 1.55µm
Cascaded wavelength conversion by four-wave mixing in a strained semiconductor optical amplifier at 10 Gb/s
We demonstrate for the first time cascaded wavelength conversion by four-wave mixing in a semiconductor optical amplifier. Bit-error-rate performance of <10^-9 at 10 Gb/s is achieved for two conversions of up to 9 nm down and up in wavelength. For two wavelength conversions of 5 nm down and up, a power penalty of 1.3 dB is measured. A system of two wavelength converters spanning 40 km of single-mode fiber is also demonstrated
Ultra-broadband wavelength-swept Tm-doped fiber laser using wavelength-combined gain stages
A wavelength-swept thulium-doped fiber laser system employing two parallel cavities with two different fiber gain stages is reported. The fiber gain stages were tailored to provide emission in complementary bands with external wavelength-dependent feedback cavities sharing a common rotating polygon mirror for wavelength scanning. The wavelength-swept laser outputs from the fiber gain elements were spectrally combined by means of a dichroic mirror and yielded over 500 mW of output with a scanning range from ~1740 nm to ~2070 nm for a scanning frequency of ~340 Hz
Cross talk penalty in two-channel wavelength conversion by four-wave mixing in a strained semiconductor optical amplifier
A crucial function in wavelength-division multiplexed (WDM) all-optical networks is a wavelength converter. This function enhances wavelength routing options and improves network reconfigurability. Here we present a systematic study of the cross talk penalty as a function of the pump-to-signal power ratio for two 2.5-Gbit/s ASK channels separated by 1.5 nm
Wavelength conversion at 10 Gb/s by four-wave mixing over a 30-nm interval
We show that the use of a long semiconductor optical amplifier increases the error-free conversion interval of a four-wave mixing (FWM)-based wavelength converter. 30-nm wavelength down-conversion and 15-nm up-conversion have been obtained at 10 Gb/s. This result is a significant improvement over the previous best performance of a FWM-based wavelength converter and suggests that the full erbium-doped fiber amplifier bandwidth can be covered with FWM wavelength converters
Estimation of the vertical wavelength of atmospheric gravity waves from airglow imagery
Abstract In the summer of 2010, two imagers were installed in New Mexico with the objective of making stereoscopic observations of atmospheric gravity waves (AGWs). As AGWs propagate vertically, they spatially perturb the airglow emission layers in all three dimensions. Estimates of the vertical wavelength, horizontal wavelength, and the intrinsic frequency are needed to characterize an AGW and quantify its effects on upper atmospheric dynamics. The dispersion relation describes the relationship between vertical and horizontal wavelengths as a function of the intrinsic frequency. Thus, any two of the three aforementioned parameters can be used to determine the third. Mesospheric winds are hard to measure and consequently the intrinsic frequency is difficult to estimate. However, the horizontal wavelength can be directly measured from airglow imagery once the three-dimensional imager field of view is projected onto the two-dimensional image plane. This thesis presents a method to estimate the vertical wavelength using an airglow perturbation model proposed by Anderson et al. (2009). The model is subsequently validated using the observations from ground-based imagers installed in New Mexico.
Abstract The perturbed airglow is modeled as a quasi-monochromatic wave and thus, it can be characterized using only a few parameters, one of which is the vertical wavelength. Because the vertical wavelength is embedded in both the phase and the magnitude of this model, two values of the vertical wavelength are estimated by applying two different parameter estimation techniques on the phase and magnitude. The estimation of the vertical wavelength from the phase of the model entails solving an overdetermined system of linear equations by minimizing the sum of the squared residuals. This estimate is then compared to that obtained by iteratively finding the best approximation to the roots of a function, representing the magnitude of the perturbation model. These two techniques are applied on three nights in 2010, and the estimates for the vertical wavelength match to within a few kilometers. Thus, the perturbation model is validated using real data
- …
