6,961 research outputs found
Possible Application of Wavefront Coding to the LSST
Wavefront Coding has been applied as a means to increase the effective depth
of focus of optical systems. In this note I discuss the potential for this
technique to increase the depth of focus of the LSST and the resulting
advantages for the construction and operation of the facility, as well as
possible drawbacks. It may be possible to apply Wavefront Coding without
changing the current LSST design, in which case Wavefront Coding might merit
further study as a risk mitigation strategy.Comment: 6 pages, 2 figure
Time-sequential Pipelined Imaging with Wavefront Coding and Super Resolution
Wavefront coding has long offered the prospect of mitigating optical aberrations and extended depth of field, but image quality and noise performance are inevitably reduced. We report on progress in the use of agile encoding and pipelined fusion of image sequences to recover image quality
Design and implementation of a scene-dependent dynamically selfadaptable wavefront coding imaging system
A computational imaging system based on wavefront coding is presented. Wavefront coding provides an extension of the depth-of-field at the expense of a slight reduction of image quality. This trade-off results from the amount of coding used. By using spatial light modulators, a flexible coding is achieved which permits it to be increased or decreased as needed. In this paper a computational method is proposed for evaluating the output of a wavefront coding imaging system equipped with a spatial light modulator, with the aim of thus making it possible to implement the most suitable coding strength for a given scene. This is achieved in an unsupervised manner, thus the whole system acts as a dynamically selfadaptable imaging system. The program presented here controls the spatial light modulator and the camera, and also processes the images in a synchronised way in order to implement the dynamic system in real time. A prototype of the system was implemented in the laboratory and illustrative examples of the performance are reported in this paper
Learning Wavefront Coding for Extended Depth of Field Imaging
Depth of field is an important factor of imaging systems that highly affects
the quality of the acquired spatial information. Extended depth of field (EDoF)
imaging is a challenging ill-posed problem and has been extensively addressed
in the literature. We propose a computational imaging approach for EDoF, where
we employ wavefront coding via a diffractive optical element (DOE) and we
achieve deblurring through a convolutional neural network. Thanks to the
end-to-end differentiable modeling of optical image formation and computational
post-processing, we jointly optimize the optical design, i.e., DOE, and the
deblurring through standard gradient descent methods. Based on the properties
of the underlying refractive lens and the desired EDoF range, we provide an
analytical expression for the search space of the DOE, which is instrumental in
the convergence of the end-to-end network. We achieve superior EDoF imaging
performance compared to the state of the art, where we demonstrate results with
minimal artifacts in various scenarios, including deep 3D scenes and broadband
imaging
Ultra high definition video decoding with motion JPEG XR using the GPU
Many applications require real-time decoding of highresolution video pictures, for example, quick editing of video sequences in video editing applications. To increase decoding speed, parallelism can be exploited, yet, block-based image and video coding standards are difficult to decode in parallel because of the high number of dependencies between blocks. This paper investigates the parallel decoding capabilities of the new JPEG XR image coding standard for use on the massively-parallel architecture of the GPU. The potential of parallelism of the hierarchical frequency coding scheme used in the standard is addressed and a parallel decoding scheme is described suitable for real-time decoding of Ultra High Definition (4320p) Motion JPEG XR video sequences. Our results show a decoding speed of up to 46 frames per second for Ultra High Definition (4320p) sequences with high-dynamic range (32-bit/ 4: 2: 0) luma and chroma components
The TIANSHAN Radio Experiment for Neutrino Detection
An antenna array devoted to the autonomous radio-detection of high energy
cosmic rays is being deployed on the site of the 21 cm array radio telescope in
XinJiang, China. Thanks in particular to the very good electromagnetic
environment of this remote experimental site, self-triggering on extensive air
showers induced by cosmic rays has been achieved with a small scale prototype
of the foreseen antenna array. We give here a detailed description of the
detector and present the first detection of extensive air showers with this
prototype.Comment: 37 pages, 15 figures. Astroparticle Physics (in press
- …
