19 research outputs found

    Waveform Design for Wireless Power Transfer with Limited Feedback

    Get PDF
    Waveform design is a key technique to jointly exploit a beamforming gain, the channel frequency selectivity, and the rectifier nonlinearity, so as to enhance the end-to-end power transfer efficiency of wireless power transfer (WPT). Those waveforms have been designed, assuming perfect channel state information at the transmitter. This paper proposes two waveform strategies relying on limited feedback for multi-antenna multi-sine WPT over frequency-selective channels. In the waveform selection strategy, the energy transmitter (ET) transmits over multiple timeslots with every time a different waveform precoder within a codebook, and the energy receiver (ER) reports the index of the precoder in the codebook that leads to the largest harvested energy. In the waveform refinement strategy, the ET sequentially transmits two waveforms in each stage, and the ER reports one feedback bit indicating an increase/decrease in the harvested energy during this stage. Based on multiple one-bit feedback, the ET successively refines waveform precoders in a tree-structured codebook over multiple stages. By employing the framework of the generalized Lloyd’s algorithm, novel algorithms are proposed for both strategies to optimize the codebooks in both space and frequency domains. The proposed limited feedback-based waveform strategies are shown to outperform a set of baselines, achieving higher harvested energy

    Wireless Sensor Network Based Monitoring System: Implementation, Constraints, and Solution

    Get PDF
    Wireless Sensor Network (WSN) is a collection of sensors communicating at close range by forming a wireless-based network (wireless). Since 2015 research related to the use of WSN in various health, agriculture, security industry, and other fields has continued to grow. One interesting research case is the use of WSN for the monitoring process by collecting data using sensors placed and distributed in locations based on a wireless system. Sensors with low power, multifunction, supported by a combination of wireless network, microcontroller, memory, operating system, radio communication, and energy source in the form of an integrated battery enable a monitoring process of the monitoring area to run properly. The implementation of the wireless sensor network includes five main parts, namely sender, receiver, wireless transmission media, data/information, network architecture/configuration, and network management. Network management itself includes network configuration management, network performance management, network failure management, network security management, and network financing management. The main obstacles in implementing a wireless sensor network include three things: an effective and efficient data sending/receiving process, limited and easily depleted sensor energy/power, network security, and data security that is vulnerable to eavesdropping and destruction. This paper presents a taxonomy related to the constraints in implementing Wireless Sensor Networks. This paper also presents solutions from existing studies related to the constraints of implementing the WSN. Furthermore, from the results of the taxonomy mapping of these constraints, new gaps were identified related to developing existing research to produce better solutions

    Signal and System Design for Wireless Power Transfer : Prototype, Experiment and Validation

    Get PDF
    A new line of research on communications and signals design for Wireless Power Transfer (WPT) has recently emerged in the communication literature. Promising signal strategies to maximize the power transfer efficiency of WPT rely on (energy) beamforming, waveform, modulation and transmit diversity, and a combination thereof. To a great extent, the study of those strategies has so far been limited to theoretical performance analysis. In this paper, we study the real over-the-air performance of all the aforementioned signal strategies for WPT. To that end, we have designed, prototyped and experimented an innovative radiative WPT architecture based on Software-Defined Radio (SDR) that can operate in open-loop and closed-loop (with channel acquisition at the transmitter) modes. The prototype consists of three important blocks, namely the channel estimator, the signal generator, and the energy harvester. The experiments have been conducted in a variety of deployments, including frequency flat and frequency selective channels, under static and mobility conditions. Experiments highlight that a channeladaptive WPT architecture based on joint beamforming and waveform design offers significant performance improvements in harvested DC power over conventional single-antenna/multiantenna continuous wave systems. The experimental results fully validate the observations predicted from the theoretical signal designs and confirm the crucial and beneficial role played by the energy harvester nonlinearity.Comment: Accepted to IEEE Transactions on Wireless Communication
    corecore