12 research outputs found

    Unexpected sawtooth artifact in beat-to-beat pulse transit time measured from patient monitor data

    Full text link
    Object: It is increasingly popular to collect as much data as possible in the hospital setting from clinical monitors for research purposes. However, in this setup the data calibration issue is often not discussed and, rather, implicitly assumed, while the clinical monitors might not be designed for the data analysis purpose. We hypothesize that this calibration issue for a secondary analysis may become an important source of artifacts in patient monitor data. We test an off-the-shelf integrated photoplethysmography (PPG) and electrocardiogram (ECG) monitoring device for its ability to yield a reliable pulse transit time (PTT) signal. Approach: This is a retrospective clinical study using two databases: one containing 35 subjects who underwent laparoscopic cholecystectomy, another containing 22 subjects who underwent spontaneous breathing test in the intensive care unit. All data sets include recordings of PPG and ECG using a commonly deployed patient monitor. We calculated the PTT signal offline. Main Results: We report a novel constant oscillatory pattern in the PTT signal and identify this pattern as a sawtooth artifact. We apply an approach based on the de-shape method to visualize, quantify and validate this sawtooth artifact. Significance: The PPG and ECG signals not designed for the PTT evaluation may contain unwanted artifacts. The PTT signal should be calibrated before analysis to avoid erroneous interpretation of its physiological meaning

    Efficient fetal-maternal ECG signal separation from two channel maternal abdominal ECG via diffusion-based channel selection

    Full text link
    There is a need for affordable, widely deployable maternal-fetal ECG monitors to improve maternal and fetal health during pregnancy and delivery. Based on the diffusion-based channel selection, here we present the mathematical formalism and clinical validation of an algorithm capable of accurate separation of maternal and fetal ECG from a two channel signal acquired over maternal abdomen

    An iterative warping and clustering algorithm to estimate multiple wave-shape functions from a nonstationary oscillatory signal

    Full text link
    Nonsinusoidal oscillatory signals are everywhere. In practice, the nonsinusoidal oscillatory pattern, modeled as a 1-periodic wave-shape function (WSF), might vary from cycle to cycle. When there are finite different WSFs, s1,…,sKs_1,\ldots,s_K, so that the WSF jumps from one to another suddenly, the different WSFs and jumps encode useful information. We present an iterative warping and clustering algorithm to estimate s1,…,sKs_1,\ldots,s_K from a nonstationary oscillatory signal with time-varying amplitude and frequency, and hence the change points of the WSFs. The algorithm is a novel combination of time-frequency analysis, singular value decomposition entropy and vector spectral clustering. We demonstrate the efficiency of the proposed algorithm with simulated and real signals, including the voice signal, arterial blood pressure, electrocardiogram and accelerometer signal. Moreover, we provide a mathematical justification of the algorithm under the assumption that the amplitude and frequency of the signal are slowly time-varying and there are finite change points that model sudden changes from one wave-shape function to another one.Comment: 39 pages, 11 figure

    Inference of synchrosqueezing transform -- toward a unified statistical analysis of nonlinear-type time-frequency analysis

    Full text link
    We provide a statistical analysis of a tool in nonlinear-type time-frequency analysis, the synchrosqueezing transform (SST), for both the null and non-null cases. The intricate nonlinear interaction of different quantities in the SST is quantified by carefully analyzing relevant multivariate complex Gaussian random variables. Several new results for such random variables are provided, and a central limit theorem result for the SST is established. The analysis sheds lights on bridging time-frequency analysis to time series analysis and diffusion geometry
    corecore