978,167 research outputs found
A quantum delayed choice experiment
Quantum systems exhibit particle-like or wave-like behaviour depending on the
experimental apparatus they are confronted by. This wave-particle duality is at
the heart of quantum mechanics, and is fully captured in Wheeler's famous
delayed choice gedanken experiment. In this variant of the double slit
experiment, the observer chooses to test either the particle or wave nature of
a photon after it has passed through the slits. Here we report on a quantum
delayed choice experiment, based on a quantum controlled beam-splitter, in
which both particle and wave behaviours can be investigated simultaneously. The
genuinely quantum nature of the photon's behaviour is tested via a Bell
inequality, which here replaces the delayed choice of the observer. We observe
strong Bell inequality violations, thus showing that no model in which the
photon knows in advance what type of experiment it will be confronted by, hence
behaving either as a particle or as wave, can account for the experimental
data
"Breathing" rogue wave observed in numerical experiment
Numerical simulations of the recently derived fully nonlinear equations of
motion for weakly three-dimensional water waves [V.P. Ruban, Phys. Rev. E {\bf
71}, 055303(R) (2005)] with quasi-random initial conditions are reported, which
show the spontaneous formation of a single extreme wave on the deep water. This
rogue wave behaves in an oscillating manner and exists for a relatively long
time (many wave periods) without significant change of its maximal amplitude.Comment: 6 pages, 12 figure
A conclusive experiment to throw more light on "light"
We describe a new realization of Ghose, Home, Agarwal experiment on wave
particle duality of light where some limitations of the former experiment,
realized by Mizobuchi and Ohtake, are overcome. Our results clearly indicate
that wave-particle complementarity must be understood between interference and
"whelcher weg" knowledge and not in a more general sense
Quantum theory of light diffraction
At present, the theory of light diffraction only has the simple wave-optical
approach. In this paper, we study light diffraction with the approach of
relativistic quantum theory. We find that the slit length, slit width, slit
thickness and wave-length of light have affected to the diffraction intensity
and form of diffraction pattern. However, the effect of slit thickness on the
diffraction pattern can not be explained by wave-optical approach, and it can
be explained in quantum theory. We compare the theoretical results with single
and multiple slits experiment data, and find the theoretical results are
accordance with the experiment data. Otherwise, we give some theory prediction.
We think all the new prediction will be tested by the light diffraction
experiment.Comment: 10 page
Millimeter wave experiment for ATS-F
A detailed description of spaceborne equipment is provided. The equipment consists of two transmitters radiating signals at 20 and 30 GHz from either U.S. coverage horn antennas or a narrow beam parabolic antenna. Three modes of operation are provided: a continuous wave mode, a multitone mode in which nine spectral lines having 180 MHz separation and spaced symmetrically about each carrier, and a communications mode in which communications signals from the main spacecraft transponder are modulated on the two carriers. Detailed performance attained in the flight/prototype model of the equipment is presented both under laboratory conditions and under environmental extremes. Provisions made for ensuring reliability in space operation are described. Also described the bench test equipment developed for use with the experiment, and a summary of the new technology is included
- …
