128,229 research outputs found
Influence of chemical speciation on the separation of metal ions from chelating agents by nanofiltration membranes
The simultaneous separation of various metal ions (nickel, copper, calcium, and iron) from chelating agents (EDTA and citric acid in water streams using Nanofiltration membranes is analyzed. Assuming that multiply-charged species are highly rejected, chemical speciation com-10 putations reproduce the observed patterns of metal and ligand rejection at different pH values and concentrations.Postprint (updated version
On-line preconcentration using dual mini-columns for the speciation of chromium(III) and chromium(VI) and its application to water samples as studied by inductively coupled plasma-atomic emission spectrometry
On-line preconcentration system for the selective, sensitive and simultaneous determination of chromium species was investigated. Dual minicolumns containing chelating resin were utilized for the speciation and preconcentration of Cr(III) and Cr(VI) in water samples. In this system, Cr(III) was collected on first column packed with iminodiacetate resin. Cr(VI) in the effluent from the first column was reduced to Cr(III), which was collected on the second column packed with iminodiacetate resin. Hydroxyammonium chloride was examined as a potential reducing agent for Cr(VI) to Cr(III).
The effects of pH, sample flow rate, column length, and interfering ions on the recoveries of Cr(III) were carefully studied. Five millilitres of a sample solution was introduced into the system. The collected species were then sequentially washed by 1 M ammonium acetate, eluted by 2 M nitric acid and measured by ICP-AES. The detection limit for Cr(III) and Cr(VI) was 0.08 and 0.15 mu g l-1, respectively. The total analysis time was about 9.4 min.
The developed method was successfully applied to the speciation of chromium in river, tap water and wastewater samples with satisfied results. </p
Challenges for the development of a biotic ligand model predicting copper toxicity in estuaries and seas
This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2011 SETAC.An effort is ongoing to develop a biotic ligand model (BLM) that predicts copper (Cu) toxicity in estuarine and marine environments. At present, the BLM accounts for the effects of water chemistry on Cu speciation, but it does not consider the influence of water chemistry on the physiology of the organisms. We discuss how chemistry affects Cu toxicity not only by controlling its speciation, but also by affecting the osmoregulatory physiology of the organism, which varies according to salinity. In an attempt to understand the mechanisms of Cu toxicity and predict its impacts, we explore the hypothesis that the common factor linking the main toxic effects of Cu is the enzyme carbonic anhydrase (CA), because it is a Cu target with multiple functions and salinity-dependent expression and activity. According to this hypothesis, the site of action of Cu in marine fish may be not only the gill, but also the intestine, because in this tissue CA plays an important role in ion transport and water adsorption. Therefore, the BLM of Cu toxicity to marine fish should also consider the intestine as a biotic ligand. Finally, we underline the need to incorporate the osmotic gradient into the BLM calculations to account for the influence of physiology on Cu toxicity.Brunel Universit
Impact of the earthworm Lumbricus terrestris (L.) on As, Cu, Pb and Zn mobility and speciation in contaminated soils
To assess the risks that contaminated soils pose to the environment properly a greater understanding of how soil biota influence the mobility of metal(loid)s in soils is required. Lumbricus terrestris L. were incubated in three soils contaminated with As, Cu, Pb and Zn. The concentration and speciation of metal(loid)s in pore waters and the mobility and partitioning in casts were compared with earthworm-free soil. Generally the concentrations of water extractable metal(loid)s in earthworm casts were greater than in earthworm-free soil. The impact of the earthworms on concentration and speciation in pore waters was soil and metal specific and could be explained either by earthworm induced changes in soil pH or soluble organic carbon. The mobilisation of metal(loid)s in the environment by earthworm activity may allow for leaching or uptake into biota
Studies of chemical speciation in naturally anoxic basins
The chemical speciation of both metals and non-metals, the use of polarographic techniques, and application to the study of the chemistry of anoxic waters are considered. In the first part of the paper unfamiliar terminology is explained and then an example of simple lake chemistry is presented to illustrate why the concept of speciation is necessary
Coupled Extraction/Re-Extraction Method for the Chemical Speciation of Nickel in NaturalWaters
Chemical fractionation and speciation of metals species in natural waters and its relation
with bioavailability have received increased attention in recent years. A simple liquid membranes
method, based on coupled liquid extraction and re-extraction processes, is proposed to separate and
quantify the species of nickel present in water samples. A simplex optimization of chemical variables,
such as carrier concentration in the organic solution and nitric acid concentration in the receiving
solution, was performed and, under optimized conditions, the extraction system was applied to
determine nickel species in water samples at natural level concentrations. A linear relationship
was established between extraction e cacy and the concentration of dissolved organic carbon in
the samples, allowing the separation and determination of labile and non-labile nickel fractions,
since the latter was not transported through the organic solution acting as liquid membrane. When the
total and labile concentrations of metals were analyzed in real samples with di erent salinities,
no significant di erences were found between the results obtained and those from well-established
methods. An average relative error of 1.50 and 2.37 was obtained for total Ni concentration and
labile fraction, respectively. Finally, a comparison with the theoretical speciation data calculated
with the softwareWinHumic V was successfully performed. Thus, the proposed method allows the
simultaneous determination of labile and non-labile nickel fractions, presented as a simple alternative
to nickel fractionation in natural waters
Leaching Properties of Estuarine Harbor Sediment Before and After Electrodialytic Remediation
Electrodialytic remediation (EDR) can be used to extract heavy metals from a variety of different media. In this work, contaminated harbor sediments from two locations in the United States and one in Norway were subjected to EDR, and were compared with batch extractions conducted with the sediment. pH-dependent leaching tests were used to evaluate changes in leaching properties of treated and control sediments. Significant fractions of total concentrations were removed during treatment (35–95% with an average of 75% for all sediments and elements investigated). The release of elements in pH-dependent leaching tests, however, demonstrated equal or greater leaching from treated sediments in the neutral pH range. Dissolved organic carbon appears to be a significant contributor to post-treatment increases in leaching, and dissolution of significant iron and aluminum sorption sites is hypothesized to also play a role. This research highlights the importance of understanding contaminant speciation and availability, as total metals concentrations, in this particular case, do not relate to estimates of the environmental availability of metals (total concentrations were typically two to three orders of magnitude greater than concentrations released during pH-dependent leaching)
A Gel Probe Equilibrium Sampler for Measuring Arsenic Porewater Profiles and Sorption Gradients in Sediments: I. Laboratory Development
A gel probe equilibrium sampler has been developed to study arsenic (As) geochemistry and sorption behavior in sediment porewater. The gels consist of a hydrated polyacrylamide polymer, which has a 92% water content. Two types of gels were used in this study. Undoped (clear) gels were used to measure concentrations of As and other elements in sediment porewater. The polyacrylamide gel was also doped with hydrous ferric oxide (HFO), an amorphous iron (Fe) oxyhydroxide. When deployed in the field, HFO-doped gels introduce a fresh sorbent into the subsurface thus allowing assessment of in situ sorption. In this study, clear and HFO-doped gels were tested under laboratory conditions to constrain the gel behavior prior to field deployment. Both types of gels were allowed to equilibrate with solutions of varying composition and re-equilibrated in acid for analysis. Clear gels accurately measured solution concentrations (±1%), and As was completely recovered from HFO-doped gels (±4%). Arsenic speciation was determined in clear gels through chromatographic separation of the re-equilibrated solution. For comparison to speciation in solution, mixtures of As(III) and As(V) adsorbed on HFO embedded in gel were measured in situ using X-ray absorption spectroscopy (XAS). Sorption densities for As(III) and As(V) on HFO embedded in gel were obtained from sorption isotherms at pH 7.1. When As and phosphate were simultaneously equilibrated (in up to 50-fold excess of As) with HFO-doped gels, phosphate inhibited As sorption by up to 85% and had a stronger inhibitory effect on As(V) than As(III). Natural organic matter (>200 ppm) decreased As adsorption by up to 50%, and had similar effects on As(V) and As(III). The laboratory results provide a basis for interpreting results obtained by deploying the gel probe in the field and elucidating the mechanisms controlling As partitioning between solid and dissolved phases in the environment
Fluorescence Analysis for Multi-Site Aluminum Binding to Natural Organic Matter
Natural organic matter (NOM) samples isolated from different water sources in Norway were compared using their fluorescence properties. Fluorescence surfaces were observed at pH 4.36 and deconvoluted using SIMPLISMA (Windig and Guilment 1991). There were a total of seven different fluorophores observed for these samples and each sampling site had between four and six ofthe fluorescent components. These components were observed to bind Al during titrations at the same pH. Multiresponse titration curves were fit using the method of Smith and Kramer (1998) and most of the binding strengths are similar to values for Suwannee River fulvic acid (1ogK’ between 4.8 and 5.5), but there are strong sites (IogK’ = 7) and weak sites (1ogK’ between 3 and 4) also observed. Results depended on the isolation method used; reverse osmosis and low pressure evaporation yielded different values but with no consistent trends
- …
