728,168 research outputs found
5G green cellular networks considering power allocation schemes
It is important to assess the effect of transmit power allocation schemes on
the energy consumption on random cellular networks. The energy efficiency of 5G
green cellular networks with average and water-filling power allocation schemes
is studied in this paper. Based on the proposed interference and achievable
rate model, an energy efficiency model is proposed for MIMO random cellular
networks. Furthermore, the energy efficiency with average and water-filling
power allocation schemes are presented, respectively. Numerical results
indicate that the maximum limits of energy efficiency are always there for MIMO
random cellular networks with different intensity ratios of mobile stations
(MSs) to base stations (BSs) and channel conditions. Compared with the average
power allocation scheme, the water-filling scheme is shown to improve the
energy efficiency of MIMO random cellular networks when channel state
information (CSI) is attainable for both transmitters and receivers.Comment: 14 pages, 7 figure
Game theoretic aspects of distributed spectral coordination with application to DSL networks
In this paper we use game theoretic techniques to study the value of
cooperation in distributed spectrum management problems. We show that the
celebrated iterative water-filling algorithm is subject to the prisoner's
dilemma and therefore can lead to severe degradation of the achievable rate
region in an interference channel environment. We also provide thorough
analysis of a simple two bands near-far situation where we are able to provide
closed form tight bounds on the rate region of both fixed margin iterative
water filling (FM-IWF) and dynamic frequency division multiplexing (DFDM)
methods. This is the only case where such analytic expressions are known and
all previous studies included only simulated results of the rate region. We
then propose an alternative algorithm that alleviates some of the drawbacks of
the IWF algorithm in near-far scenarios relevant to DSL access networks. We
also provide experimental analysis based on measured DSL channels of both
algorithms as well as the centralized optimum spectrum management
Material Limitations on the Detection Limit in Refractometry
We discuss the detection limit for refractometric sensors relying on high-Q
optical cavities and show that the ultimate classical detection limit is given
by min{Dn} > eta with n+i*eta being the complex refractive index of the
material under refractometric investigation. Taking finite Q factors and
filling fractions into account, the detection limit declines. As an example we
discuss the fundamental limits of silicon-based high-Q resonators, such as
photonic crystal resonators, for sensing in a bio-liquid environment, such as a
water buffer. In the transparency window of silicon the detection limit becomes
almost independent on the filling fraction, while in the visible, the detection
limit depends strongly on the filling fraction because silicon absorbs
strongly.Comment: Published in Special Issue "Laser Spectroscopy and Sensing", Edited
by Prof. M.W. Sigris
Elastocapillary filling of deformable nanochannels
The capillary filling speed of wetting liquids of varying viscosity and surface tension in hydrophilic nanochannels with an elastic capping layer has been analyzed. The channels, with a height just below 80 nm, are suspended by a thin flexible membrane that easily deforms due to the negative pressure which develops behind the moving meniscus. In the elastocapillary filling of the channels, two opposite effects compete: the decreased cross channel sections increase the flow resistance, while the Laplace pressure that acts as the driving force becomes more negative due to the increased meniscus curvature. Although the meniscus position shows a square root of time behavior as described by the Washburn relation, the net result of the induced bending of the membranes is a definite increase of the filling speed. We propose a relatively straightforward model for this elastocapillary process and present experimental results of the filling speed of ethanol, water, cyclohexane and acetone that are found to be in good agreement with the presented model, for membrane deflections of up to 80 percent of the original channel height
- …
