26,841 research outputs found

    A mini-review on the impacts of climate change on wastewater reclamation and reuse

    Full text link
    © 2014 Elsevier B.V. To tackle current water insecurity concerns, wastewater reclamation and reuse have appeared as a promising candidate to conserve the valuable fresh water sources while increasing the efficiency of material utilization. Climate change, nevertheless, poses both opportunities and threats to the wastewater reclamation industry. Whereas it elevates the social perception on water-related issues and fosters an emerging water-reuse market, climate change simultaneously presents adverse impacts on the water reclamation scheme, either directly or indirectly. These effects were studied fragmentally in separate realms. Hence, this paper aims to link these studies for providing a thorough understanding about the consequences of the climate change on the wastewater reclamation and reuse. It initially summarizes contemporary treatment processes and their reuse purposes before carrying out a systematic analysis of available findings

    Environmental Dynamics in Animal Waste Reclamation in the Scaling up of Livestock in Thailand

    Get PDF
    Thailand has seen a scaling up of pig production in numbers and structure. Nonetheless, in-house separation and agricultural reclamation of pig solid waste are common practice. Waste reclamation is not taking place under small-scale farming and its environmental dynamics cannot be simply understood as a direct projection to larger scales. Scaling up has transformed the environmental significance of waste reclamation, including waste transfer from livestock to agriculture farmers. Waste transfer benefits pig farmers by trade and removal of waste by agriculture and aquaculture farmers and is key to the environmental dynamics of pig production. However, waste reclamation is not clearly defined as a management option in environmental frameworks. Waste management is mainly addressed as in-farm wastewater with limited attention to agro-environmental values of present practices. To recognise present practices in agro-environmental policies this thesis suggests a descriptive strategy focused on the transfer of waste. Such strategy would avoid command-and-control norms, avoid conflicting with an environmental culture centered in biogas technology and support knowledge transfer in agriculture. A focus on waste transfer from animal farms to agriculture [and aquaculture] plots is interpreted as off-site waste management. Off-site waste management calls for the inclusion of geographical variables beyond animal farms. This leads to an extended area of environmental influence (EAEI). Resulting environmental dynamics allows an interpretation of environment beyond resource in classical agricultural geography to a connotation where environment is also significant to agriculture and livestock because of the impacts from production. The recognition of reclamation practices and, consequently, of the integral environmental dynamics, and hence the connotation of environment, would contribute to connect livestock with agriculture through environmental geography. Intensive livestock is then defined as distribution and not location. Formalisation of reclamation practices entails the acknowledgment of agro-ecological cycles in livestock

    Drivers of Microbial Risk for Direct Potable Reuse and de Facto Reuse Treatment Schemes: The Impacts of Source Water Quality and Blending.

    Get PDF
    Although reclaimed water for potable applications has many potential benefits, it poses concerns for chemical and microbial risks to consumers. We present a quantitative microbial risk assessment (QMRA) Monte Carlo framework to compare a de facto water reuse scenario (treated wastewater-impacted surface water) with four hypothetical Direct Potable Reuse (DPR) scenarios for Norovirus, Cryptosporidium, and Salmonella. Consumer microbial risks of surface source water quality (impacted by 0-100% treated wastewater effluent) were assessed. Additionally, we assessed risks for different blending ratios (0-100% surface water blended into advanced-treated DPR water) when source surface water consisted of 50% wastewater effluent. De facto reuse risks exceeded the yearly 10-4 infections risk benchmark while all modeled DPR risks were significantly lower. Contamination with 1% or more wastewater effluent in the source water, and blending 1% or more wastewater-impacted surface water into the advanced-treated DPR water drove the risk closer to the 10-4 benchmark. We demonstrate that de facto reuse by itself, or as an input into DPR, drives microbial risks more so than the advanced-treated DPR water. When applied using location-specific inputs, this framework can contribute to project design and public awareness campaigns to build legitimacy for DPR

    A critical review of resource recovery from municipal wastewater treatment plants : market supply potentials, technologies and bottlenecks

    Get PDF
    In recent decades, academia has elaborated a wide range of technological solutions to recover water, energy, fertiliser and other products from municipal wastewater treatment plants. Drivers for this work range from low resource recovery potential and cost effectiveness, to the high energy demands and large environmental footprints of current treatment-plant designs. However, only a few technologies have been implemented and a shift from wastewater treatment plants towards water resource facilities still seems far away. This critical review aims to inform decision-makers in water management utilities about the vast technical possibilities and market supply potentials, as well as the bottlenecks, related to the design or redesign of a municipal wastewater treatment process from a resource recovery perspective. Information and data have been extracted from literature to provide a holistic overview of this growing research field. First, reviewed data is used to calculate the potential of 11 resources recoverable from municipal wastewater treatment plants to supply national resource consumption. Depending on the resource, the supply potential may vary greatly. Second, resource recovery technologies investigated in academia are reviewed comprehensively and critically. The third section of the review identifies nine non-technical bottlenecks mentioned in literature that have to be overcome to successfully implement these technologies into wastewater treatment process designs. The bottlenecks are related to economics and value chain development, environment and health, and society and policy issues. Considering market potentials, technological innovations, and addressing potential bottlenecks early in the planning and process design phase, may facilitate the design and integration of water resource facilities and contribute to more circular urban water management practices

    Comparison of the performance of two reverse osmosis membranes for the final purification of olive mill wastewater

    Get PDF
    Two quite different reverse osmosis (RO) polymeric membranes were examined for the final purification of olive mill wastewater from two-phase olive mills (OMW2): the first one is a thin-film composite (TFC) membrane consisting of polyamide active layer on polysulfone ultrafiltration support, whereas the other one is a low-pressure membrane made of asymmetric polyamide. A net operating pressure (PTM) of 25 bar was found as the target for the TFC membrane, whereas for the asymmetric one a PTM of 8 bar was chosen, given that similar flux decay but still significant productivity was observed by increasing the PTM for this membrane. These results are confirmed by the fouling index (b) values calculated for each membrane. Complete removal of suspended solids, phenolic compounds and iron was achieved by both membranes. Otherwise, the asymmetric membrane ensured slightly higher organic matter (COD) and electroconductivity (EC) reduction, leading to a COD concentration in the permeate stream equal to 3.7 mg L-1 and 1.4 mg L-1 (TFC vs. asymmetric), whereas the EC values were 97.0 and 31.0 μs cm-1, respectively. This would permit reusing the purified effluent provided by both membranes in the production process and close the loop at industrial scale. Moreover, the asymmetric membrane provides a steady-state flux value of the same order of that yielded by the TFC membrane upon more than three times less PTM (14.9 L h-1m-2 at PTM = 8 bar vs. 15.2 L h-1m-2 at PTM = 25 bar), implying a reduction of the specific energy consumption above 50 %, from 0.30 ? m-3 for the TFC membrane to 0.14? m-3 for the asymmetric one. Copyright © 2015, AIDIC Servizi S.r.l

    Lake Mead Science Symposium, January 13 an 14, 2009, Las Vegas, Nevada: Program

    Full text link
    Conference program for the 2009 Lake Mead Science Symposium. Includes abstracts of presentations, registration packet, exhibitor and sponsor information

    Measuring Nitrogen Transformation in Wastewater Impacted Streams Using In-Situ Benthic Chambers

    Get PDF
    Acrylic chambers and metal frames were installed at the sediment-water interface of streams impacted by the effluent from wastewater reclamation facilities in order to determine nitrogen rates for nitrification, denitrification, assimilation, ANAMMOX, and DNRA. Each chamber was dosed with an isotopic form of nitrate (15NO3 - ), and both isotopic (15N) and non-isotopic (14N) samples were collected. The project locations included East Canyon Creek near the East Canyon Wastewater Reclamation Facility in Park City, Utah and Box Elder Creek near the Brigham City Wastewater Treatment Plant in Brigham City, Utah. Separate chamber measurements were conducted upstream and downstream of each wastewater reclamation facility in order to determine the impact of the wastewater effluent on the stream. At the conclusion of the study, significant rates for both traditional (nitrification, denitrification, assimilation) and non-traditional nitrogen transformations (DNRA, ANAMMOX) were found at various locations. Specific transformations were found exclusively upstream or exclusively downstream of the wastewater treatment plant. Transformations that were found both upstream and downstream of the treatment plants were not significantly different, indicating no impact from the WWTPs on nitrogen transformations. Additionally, the use of isotopic nitrogen for the study did not prove necessary for determining nitrification and denitrification rates

    ZeroWasteWater: short-cycling of wastewater resources for sustainable cities of the future

    Get PDF
    Sewage treatment relies mainly on conventional activated sludge (CAS) systems, reaching sufficiently low pollutant effluent levels. Yet, CAS has a low cost-effectiveness and recovery potential and a high electricity demand and environmental footprint. By 2050, globally we have to solve severe water and phosphorus shortages while significantly decreasing greenhouse gas emissions. In this review and opinion paper, the ZeroWasteWater concept is proposed as a sustainable centralised technology train to short-cycle water, energy and valuable materials from sewage, while adequately abating pathogens, heavy metals and trace organics. Electrical energy recovery from anaerobic digestion of the organics present in sewage and kitchen waste (KW) has a value of 4.0 per inhabitant equivalent (IE) per year. In addition to sewerage improvements and water conservation, prerequisites include an advanced physico-chemical and/or biological concentration step at the entry of the sewage treatment plant. In the side stream, the recovery of phosphorus and carbon-sequestrating biochar from the digested sludge and of nitrogen from the digestate has a value of 6.3IE-1 year-1. Alternatively, recovery of biogas and materials can occur directly on source-separated black water. In the main stream, partial nitritation and anammox oxidise residual nitrogen. Moreover, two serial heat pumps recover thermal energy, valued at 6.9IE-1 year-1, cooling the water by 5 degrees C, and membrane technologies recover potable water at 65IE-1 year-1. Interestingly, ZeroWasteWater is expected to be economically viable. Key steps are to incorporate water chain management into holistic urban planning and thus produce a cradle-to-cradle approach that society will find acceptable

    The Exercise of Local Control Over Gas Extraction

    Get PDF
    • …
    corecore