3 research outputs found

    Combinatorial Surrogate-Assisted Optimization for Bus Stops Spacing Problem

    Get PDF
    International audienceThe distribution of transit stations constitutes an ubiquitous task in large urban areas. In particular, bus stops spacing is a crucial factor that directly affects transit ridership travel time. Hence, planners often rely on traffic surveys and virtual simulations of urban journeys to design sustainable public transport routes. However, the combinator-ial structure of the search space in addition to the time-consuming and black-box traffic simulations require computationally expensive efforts. This imposes serious constraints on the number of potential configurations to be explored. Recently, powerful techniques from discrete optimization and machine learning showed convincing to overcome these limitations. In this preliminary work, we build combinatorial surrogate models to approximate the costly traffic simulations. These so-trained surrog-ates are embedded in an optimization framework. More specifically, this article is the first to make use of a fresh surrogate-assisted optimization algorithm based on the mathematical foundations of discrete Walsh functions in order to solve the real-world bus stops spacing optimization problem. We conduct our experiments with the sialac benchmark in the city of Calais, France. We compare state-of-the-art approaches and we highlight the accuracy and the optimization efficiency of the proposed methods

    Surrogate-assisted Multi-objective Combinatorial Optimization based on Decomposition and Walsh Basis

    Get PDF
    International audienceWe consider the design and analysis of surrogate-assisted algorithms for expensive multi-objective combinatorial optimization. Focusing on pseudo-boolean functions, we leverage existing techniques based on Walsh basis to operate under the decomposition framework of MOEA/D. We investigate two design components for the cheap generation of a promising pool of offspring and the actual selection of one solution for expensive evaluation. We propose different variants, ranging from a filtering approach that selects the most promising solution at each iteration by using the constructed Walsh surrogates to discriminate between a pool of offspring generated by variation, to a substitution approach that selects a solution to evaluate by optimizing the Walsh surrogates in a multi-objective manner. Considering bi-objective NK landscapes as benchmark problems offering different degree of non-linearity, we conduct a comprehensive empirical analysis including the properties of the achievable approximation sets, the anytime performance, and the impact of the order used to train the Walsh surrogates. Our empirical findings show that, although our surrogate-assisted design is effective, the optimal integration of Walsh models within a multi-objective evolutionary search process gives rise to particular questions for which different trade-off answers can be obtained

    Walsh functions as surrogate model for pseudo-boolean optimization problems

    No full text
    International audienceSurrogate-modeling is about formulating quick-to-evaluate mathematical models, to approximate black-box and time-consuming computations or simulation tasks. Although such models are well-established to solve continuous optimization problems, very few investigations regard the optimization of combinatorial structures. These structures deal for instance with binary variables, allowing each compound in the representation of a solution to be activated or not. Still, this field of research is experiencing a sudden renewed interest, bringing to the community fresh algorithmic ideas for growing these particular surrogate models. This article proposes the first surrogate-assisted optimization algorithm (WSaO) based on the mathematical foundations of discrete Walsh functions, combined with the powerful grey-box optimization techniques in order to solve pseudo-boolean optimization problems. We conduct our experiments on a benchmark of combinatorial structures and demonstrate the accuracy, and the optimization efficiency of the proposed model. We finally highlight how Walsh surrogates may outperform the state-of-the-art surrogate models for pseudo-boolean functions
    corecore