325 research outputs found
Evidence of Zonal-Flow-Driven Limit-Cycle Oscillations during L-H Transition and at H-mode Pedestal of a New Small-ELM Regime in EAST
Spatiotemporal evolution of runaway electrons from synchrotron images in Alcator C-Mod
In the Alcator C-Mod tokamak, relativistic runaway electron (RE) generation
can occur during the flattop current phase of low density, diverted plasma
discharges. Due to the high toroidal magnetic field (B = 5.4 T), RE synchrotron
radiation is measured by a wide-view camera in the visible wavelength range
(~400-900 nm). In this paper, a statistical analysis of over one thousand
camera images is performed to investigate the plasma conditions under which
synchrotron emission is observed in C-Mod. In addition, the spatiotemporal
evolution of REs during one particular discharge is explored in detail via a
thorough analysis of the distortion-corrected synchrotron images. To accurately
predict RE energies, the kinetic solver CODE [Landreman et al 2014 Comput.
Phys. Commun. 185 847-855] is used to evolve the electron momentum-space
distribution at six locations throughout the plasma: the magnetic axis and flux
surfaces q = 1, 4/3, 3/2, 2, and 3. These results, along with the
experimentally-measured magnetic topology and camera geometry, are input into
the synthetic diagnostic SOFT [Hoppe et al 2018 Nucl. Fusion 58 026032] to
simulate synchrotron emission and detection. Interesting spatial structure near
the surface q = 2 is found to coincide with the onset of a locked mode and
increased MHD activity. Furthermore, the RE density profile evolution is fit by
comparing experimental to synthetic images, providing important insight into RE
spatiotemporal dynamics
New Edge Localized Modes at Marginal Input Power with Dominant RF-heating and Lithium-wall Conditioning in EAST
Newly uncovered physics of MHD instabilities using 2-D electron cyclotron emission imaging system in toroidal plasmas
Validation of physics models using the newly uncovered physics with a 2-D electron cyclotron emission imaging (ECEi) system for magnetic fusion plasmas has either enhanced the confidence or substantially improved the modeling capability. The discarded "full reconnection model" in sawtooth instability is vindicated and established that symmetry and magnetic shear of the 1/1 kink mode are critical parameters in sawtooth instability. For the 2/1 instability, it is demonstrated that the 2-D data can determine critical physics parameters with a high confidence and the measured anisotropic distribution of the turbulence and its flow in presence of the 2/1 island is validated by the modelled potential and gyro-kinetic calculation. The validation process of the measured reversed-shear Alfveneigenmode (RSAE) structures has improved deficiencies of prior models. The 2-D images of internal structure of the ELMs and turbulence induced by the resonant magnetic perturbation (RMP) have provided an opportunity to establish firm physics basis of the ELM instability and role of RMPs. The importance of symmetry in determining the reconnection time scale and role of magnetic shear of the 1/1 kink mode in sawtooth instability may be relevant to the underlying physics of the violent kink instability of the filament ropes in a solar flare
Recent progress towards a physics-based understanding of the H-mode transition
Results from recent experiment and numerical simulation point towards a picture of the L-H transition in which edge shear flows interacting with edge turbulence create the conditions needed to produce a non-zero turbulent Reynolds stress at and just inside the LCFS during L-mode discharges. This stress acts to reinforce the shear flow at this location and the flow drive gets stronger as heating is increased. The L-H transition ensues when the rate of work done by this stress is strong enough to drive the shear flow to large values, which then grows at the expense of the turbulence intensity. The drop in turbulence intensity momentarily reduces the heat flux across the magnetic flux surface, which then allows the edge plasma pressure gradient to build. A sufficiently strong ion pressure gradient then locks in the H-mode state. These results are in general agreement with previously published reduced 0D and 1D predator prey models. An extended predator-prey model including separate ion and electron heat channels yields a non-monotonic power threshold dependence on plasma density provided that the fraction of heat deposited on the ions increases with plasma density. Possible mechanisms to explain other macroscopic transition threshold criteria are identified. A number of open questions and unexplained observations are identified, and must be addressed and resolved in order to build a physics-based model that can yield predictions of the macroscopic conditions needed for accessing H-mode
- …
