28,496 research outputs found

    Forward-Looking Echoic Flow for Guidance of an Unmanned Aerial System

    Get PDF
    Echoic flow is a formula derived from natural phenomena that has the potential to control vehicles with great efficiency using range information. Initially studied in bats, echoic flow allows animals to use sonar as a navigation tool. Downward-facing echoic flow used in the vertical landing of an Unmanned Aerial System (UAS) has been studied in past research. Forward-looking echoic flow on a UAS could allow for new approaches to braking and following techniques in the horizontal plane of motion towards both fixed and moving targets. The goal of this project was to demonstrate forward-looking echoic flow guidance towards a fixed target using a quadcopter and to gather data showing the accuracy and precision of the process. In initial forward-looking tests, a modified Parrot AR Drone with an added ultrasonic sensor and Raspberry Pi were used as the UAS. Preliminary findings showed erratic and often inaccurate range finding measurements. These measurements were attributed in part to the inability of the UAS to aim directly at the small target. A software filter was designed to minimize the impact of erroneous measurements. Further tests conducted using a flat wall as the approach target still yielded trials that did not follow the ideal echoic flow approach accurately. In an attempt to improve the performance of trials, the equation used to convert velocities to motor thrust values was recalibrated. Though trial results did improve due to this modification, imprecise quadcopter movement control prevented the achievement of a smooth echoic flow approach. Finally, simulations of forward-looking trials were performed to test the impact of measurement and velocity error on the performance of echoic flow approaches. The values of measurement error that resulted in acceptable echoic flow performance were found to be lower than the expected values for the UAS in this study. Further forward-looking echoic flow research is recommended using a more accurate and robust rangefinder. A UAS capable of more precise horizontal plane movement is also recommended.No embargoAcademic Major: Electrical and Computer Engineerin

    Assessment of the Accuracy of a Multi-Beam LED Scanner Sensor for Measuring Olive Canopies

    Get PDF
    MDPI. CC BYCanopy characterization has become important when trying to optimize any kind of agricultural operation in high-growing crops, such as olive. Many sensors and techniques have reported satisfactory results in these approaches and in this work a 2D laser scanner was explored for measuring canopy trees in real-time conditions. The sensor was tested in both laboratory and field conditions to check its accuracy, its cone width, and its ability to characterize olive canopies in situ. The sensor was mounted on a mast and tested in laboratory conditions to check: (i) its accuracy at different measurement distances; (ii) its measurement cone width with different reflectivity targets; and (iii) the influence of the target’s density on its accuracy. The field tests involved both isolated and hedgerow orchards, in which the measurements were taken manually and with the sensor. The canopy volume was estimated with a methodology consisting of revolving or extruding the canopy contour. The sensor showed high accuracy in the laboratory test, except for the measurements performed at 1.0 m distance, with 60 mm error (6%). Otherwise, error remained below 20 mm (1% relative error). The cone width depended on the target reflectivity. The accuracy decreased with the target density

    Rayleigh Wave Calibration of Acoustic Emission Sensors and Ultrasonic Transducers.

    Get PDF
    Acoustic emission (AE) sensors and ultrasonic transducers were characterized for the detection of Rayleigh waves (RW). Small aperture reference sensors were characterized first using the fracture of glass capillary tubes in combination with a theoretical displacement calculation, which utilized finite element method (FEM) and was verified by laser interferometer. For the calibration of 18 commercial sensors and two piezoceramic disks, a 90° angle beam transducer was used to generate RW pulses on an aluminum transfer block. By a substitution method, RW receiving sensitivity of a sensor under test was determined over the range of frequency from 22 kHz to 2 MHz. Results were compared to the sensitivities to normally incident waves (NW) and to other guided waves (GW). It was found that (1) NW sensitivities are always higher than RW sensitivities, (2) differences between NW and RW receiving sensitivities are dependent on frequency and sensor size, (3) most sensors show comparable RW and GW receiving sensitivities, especially those of commonly used AE sensors, and (4) the receiving sensitivities of small aperture (1 mm diameter) sensors behave differently from larger sensors

    Synthetic aperture guided wave imaging using a mobile sensor platform

    Get PDF
    This oral session at conference looks at synthetic aperture guided wave imaging using a mobile sensor platfor

    Future of smart cardiovascular implants

    Get PDF
    Cardiovascular disease remains the leading cause of death in Western society. Recent technological advances have opened the opportunity of developing new and innovative smart stent devices that have advanced electrical properties that can improve diagnosis and even treatment of previously intractable conditions, such as central line access failure, atherosclerosis and reporting on vascular grafts for renal dialysis. Here we review the latest advances in the field of cardiovascular medical implants, providing a broad overview of the application of their use in the context of cardiovascular disease rather than an in-depth analysis of the current state of the art. We cover their powering, communication and the challenges faced in their fabrication. We focus specifically on those devices required to maintain vascular access such as ones used to treat arterial disease, a major source of heart attacks and strokes. We look forward to advances in these technologies in the future and their implementation to improve the human condition

    Determining Enclosure Breach Electromagnetically

    Get PDF
    A structure breach may be determined. A sensor, provided in the structure, may be driven with a constant frequency signal. The sensor may comprise a first conductive element and a second conductive element. The first conductive element may be substantially parallel with the second conductive element. A standing wave pattern may be induced on the sensor by the constant frequency signal reflecting off a termination point of the sensor. A least one characteristic of the sensor caused by the voltage standing wave pattern may be measured. A breach occurrence in the structure may be determined when the measured at least one characteristic varies from a previously determined value by a predetermined amount. The first conductive element and the second conductive element may be sandwiched between two layers comprising the structure. The structure may comprise a shipping container floor. The detected breach may comprise an opening greater than nine square inches.Georgia Tech Research Corporatio

    The high frequency flexural ultrasonic transducer for transmitting and receiving ultrasound in air

    Get PDF
    Flexural ultrasonic transducers are robust and low cost sensors that are typically used in industry for distance ranging, proximity sensing and flow measurement. The operating frequencies of currently available commercial flexural ultrasonic transducers are usually below 50 kHz. Higher operating frequencies would be particularly beneficial for measurement accuracy and detection sensitivity. In this paper, design principles of High Frequency Flexural Ultrasonic Transducers (HiFFUTs), guided by the classical plate theory and finite element analysis, are reported. The results show that the diameter of the piezoelectric disc element attached to the flexing plate of the HiFFUT has a significant influence on the transducer's resonant frequency, and that an optimal diameter for a HiFFUT transmitter alone is different from that for a pitch-catch ultrasonic system consisting of both a HiFFUT transmitter and a receiver. By adopting an optimal piezoelectric diameter, the HiFFUT pitch-catch system can produce an ultrasonic signal amplitude greater than that of a non-optimised system by an order of magnitude. The performance of a prototype HiFFUT is characterised through electrical impedance analysis, laser Doppler vibrometry, and pressure-field microphone measurement, before the performance of two new HiFFUTs in a pitch-catch configuration is compared with that of commercial transducers. The prototype HiFFUT can operate efficiently at a frequency of 102.1 kHz as either a transmitter or a receiver, with comparable output amplitude, wider bandwidth, and higher directivity than commercially available transducers of similar construction
    • 

    corecore