2 research outputs found

    Wake-up radio systems for cooperative-intelligent transport systems architecture

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Cooperative-Intelligent Transport systems are new applications developed on top of communications between vehicles and between vehicles and fixed infrastructure. Their architecture envisages devices deployed along the routes and streets, transmitting and receiving different kind of messages belonging to different services. Quite often, these devices will be located in isolated places with very low number of vehicles passing nearby. Being in isolated places, these devices will require to be feed with rechargeable batteries and alternative power sources, the usage of which need to be very efficient. The fact of continuously transmitting messages whenever there is no vehicle to receive them demands a solution. In this paper, we propose to use a well-known saving power strategy already used in Internet of Things, the Wake-up Radio systems. As vehicular communications are based on IEEE 802.11 standard, we propose to use a Wake-up Radio system based on this standard as well, being thus no additional hardware needed for the wake-up transmitter. The paper analyses the feasibility of using this solution on several vehicular applications.Peer ReviewedPostprint (author's final draft

    SMART TRANSPORTATION SYSTEMS: IOT-CONNECTED WIRELESS SENSOR NETWORKS FOR TRAFFIC CONGESTION MANAGEMENT

    Get PDF
    Smart Transportation Systems (STS) are crucial to alleviating urban traffic congestion. This paper examines how gridlock managers might use IoT-related remote sensor networks to improve transportation productivity and flexibility. The study's initial inquiry examines traffic congestion's negative consequences on cities, including increased travel time, fuel consumption, and pollution. It emphasizes the need for creative solutions to reduce traffic and improve urban life. The solution's IoT-enabled wireless sensor networks simplify real-time data collection and analysis. A dense sensor network at important traffic sites can collect significant data on traffic flow, vehicle density, and road conditions. This data enables smart traffic management methods and better transportation systems. Sensor hubs, information transmission standards, and information analysis methodologies are examined in the exploratory article. It discusses network-sending challenges such as power productivity, flexibility, and information security and proposes solutions. The essay also considers synergies with autonomous cars, smart traffic signal systems, and IoT-connected wireless sensor networks in transportation infrastructure. These pairings boost gridlock executives' viability and STS's future. An IoT-associated remote sensor network was dispatched to a metropolitan region in the exploration piece to test the proposed configuration. The research examines the data, how traffic management tactics were applied, and how traffic flow, trip time, and environmental sustainability improved. This research shows that IoT-connected wireless sensor networks may transform smart transportation system traffic congestion management. Advanced analytics and real-time data may help cities reduce congestion, increase mobility, and develop sustainable cities
    corecore