91 research outputs found
Optimasi Kecepatan Putar Fan Pada Air Cooled Condenser Berbasis Fuzyy-PID di Unit WHRPG SEMEN INDONESIA TUBAN
Waste Heat Recovery Power Generation (WHRPG) is a steam power generation system that utilizes exhaust gas heat from industrial production, in this way reducing CO2 gas emissions by 122,358 tons/year. In addition, the plant with WHRPG installation system is very cheap and environmentally friendly because without using coal fuel in general, but the exhaust gas to produce steam that will be used for electricity generation process on WHRPG.
In this WHRPG plant, researchers want to know the operational reliability of the fan on the air cooled condenser to the performance of the condenser by adjusting the fan speed in accordance with changes in the temperature of the condenser exhaust turbine, so that the high temperature of the condenser is reduced and the condensation process is accelerated and how to run fuzzy-pid control to determine the rotational speed of the fan to changes in the temperature of the exhaust turbine in the condenser. To determine the optimal fan operation on the performance of air cooled condenser, the researchers used Fuzzy-PID based method. This study uses simulation with matlab 2018A software.
In this study when the condenser pipe without a fan as a cooling medium the temperature produced is 80°C, this temperature increases from the initial 30°C, the increase in temperature is caused by heat flow from the turbine exhaust fluid with a calorific value of 272.22222244. To lower the temperature in the condenser required 5 fans as a cooling medium, in this process called forced convection heat transfer with voltage values respectively on the fan is 113.8 V, 125.5 V, 137.7 V, 150.4 V, and 163.8 V and fan speeds of 500Rpm, 525Rpm, 550Rpm, 575Rpm, and 600Rpm. With the performance of the fan condenser pipe temperature can drop to 33.30°C to lower the temperature at the expected sett point is 32°C then the performance of the condenser fan needs to be controlled using fuzzy-pid method.
From this study it can be concluded that by controlling the condenser fan using fuzzy-pid method can reduce the temperature in the condenser pipe in accordance with the expected sett point temperature is 32°C
Thermal Analysis on Water-Simple Rankine Cycle and Combined Cycle for Waste Heat Recovery Flat Glass Factory
One of the most important processes in glass production is the furnace section. The furnace’s waste heat, which still has a temperature around 400oC-500°C, is often released directly to the surrounding using a stack. Waste Heat Recovery Generation (WHRPG) and Organic Rankine Cycle (ORC) is one of the many waste heat reusing schemes implemented to increase the efficiency of industrial processes by converting the waste heat into electricity. Two schemes of the system will be studied in this research; there are Water-Simple Rankine Cycle (WSRC) and combined cycle (WSRC and ORC). In the WSRC, steam mass flow rate varied and found the highest performance to compare with combined cycle system. For combined cycle, the variations of the system are steam mass flow rate, the evaporating temperature, flue gas temperature in stack and refrigerant as working fluid. For the result, the highest combined cycle perform is 5.89 MW with steam mass flow rate 5 kg/s. Higher evaporating temperature (160°C) results in a higher combined cycle performance (5.96 MW), while, similarly, a lower flue gas temperature (120°C) also yields a higher combined cycle performance (6.3 MW). By varying the working fluids of R-11, R-113, and R-114
Optimization of Organic Rankine Cycle Waste Heat Recovery for Power Generation in a Cement Plant via Response Surface Methodology
A cement plant that produces 8,300 tons per day
releases 265,000 Nm3/h of flue gas at 360°C from its Suspension
Preheater (SP) and 400,000 Nm3/h of hot air at 310°C from its air
quenching cooler (AQC). It is imperative to recover the waste heat emitted by
the plant for power generation, i.e., Waste Heat Recovery Power Generation
(WHRPG). This paper aims to optimize waste heat recovery from the cement plant
using Response Surface Methodology (RSM), for which an Organic Rankine Cycle
(ORC) is applied for electric power generation. The working fluid of an ORC
power generation system was selected among candidates of organic working fluids
(i.e., isobutane, isopentane, benzene, and toluene) by using the Technique for
Order of Preference by Similarity to Ideal Solution (TOPSIS), a Multi-Criteria
Decision Analysis (MCDA) method. The ORC power generation system configuration
and the corresponding operating conditions employing the selected working fluid
(i.e., pressures and temperatures) are optimized by applying RSM. Based on
TOPSIS evaluation and considering factors of health, safety, environment
impacts, cost, and power generated, isopentane was selected as the working
fluid for the ORC WHRPG, which was configured to consist of a boiler, two
expansion turbines, a reheater, and a recuperator. Implementation of RSM
attained optimum operating conditions of high pressure turbine, low pressure
turbine, and condenser at 11.3 bar-a saturated vapor, 4.3 bar-a and 184°C, and
1.8 bar-a, respectively. Finally, the gross electric power generated of 5.7 MW
at 12.5 percent of energy conversion efficiency is generated by the pertinent
ORC WHRPG
Analisis Penurunan Kapasitas Boiler Suspension Preheater Pada Waste Heat Recovery Power Generation (WHRPG)
Boiler adalah suatu bejana tertutup yang berfungsi untuk memanaskan fluida berbentuk air sehingga menghasilkan uap atau air panas. Uap atau air panas dibawah tekanan kemudian dapat digunakan untuk mentransfer panas ke suatu proses. Salah satu boiler yang digunakan di pabrik semen PT. Semen Indonesia adalah boiler pipa air yang panasnya didapat dari sisa panas hasil pengolahan semen. produksi steam boiler suspension pada quarter pertama menunjukan bahwa totalizer steam hanya mencapai 51% dari targetnya.Tujuan perhitungan ini adalah untuk menganalisa penurunan kapasitas boiler suspension.Metode perhitungan ini menggunakan metode perhitungan neraca panas pada masing masing masing ruang konveksi boiler dengan menggabungkan perhitungan yang disediakan oleh manufaktur. Permasalahan dalam analisa penurunan kapasitas boiler suspension preheater ini adalah tidak adanya metering gas panas yang masuk kedalam boiler dan pada perhitungan yang disediakan oleh manufaktur boiler adalah perhitungan gas panas yang masuk dihitung secara teoritis dan laju gas panas yang masuk adalah gas panas total yang masuk kedalam boiler suspension preheater.Dari hasil perhitungan yang dilakukan, telah ditemukan bahwa Pada boiler ILC terdapat penurunan laju gas panas sebesar 72% (80.342,75 Nm3/h) dan boiler SLC sebesar 52,3% (137.849,95 Nm3/h) sehingga menyebabkan penurunan laju kapasitas uap (Steam Flow) menjadi 21.793 kg/h dari kapasitas design sebesar 29.800 kg/h
Meeting international standards of cleaner production in developing countries: Challenges and financial realities facing the Indonesian cement industry
A key challenge for heavy industry in emerging economies is how to meet international greenhouse gas (GHG) emission standards since they are often based on the conditions and capacities of manufacturing in advanced countries. Firms in developing nations are typically cost-driven and reliant on older, less efficient technology: very few have achieved the relevant targets. Cement making underscores the point: no study to date has specifically quantified, in technical and financial terms, the gap between existing firm performance and global GHG emission standards. We examine Indonesia�s largest cement manufacturing facility to investigate what needs to be done to overcome the discrepancy. The article starts by reviewing key contextual issues such as the facility�s location, scale, organisational configuration, available materials, energy use, and technological capacities. The plant�s direct emission intensity is 0.69 t CO2e/t cement, higher than the global target for 2030 (0.55 t CO2e/t). Analysis reveals six potential emissions reduction activities: (1) utilising fly ash as a clinker substitute; (2) employing limestone as a clinker substitute; (3) using biomass from rice husks as an alternative fuel; (4) adding pre-heating stages in kilns; (5) waste heat recovery for power generation; and (6) using refused-derived fuel from municipal solid waste as an alternative fuel. These measures, if adopted in full, could reduce GHGs at the facility by up to 33%, or a total of 34,145,190 t CO2e over a 10-year timeframe (2020-2030). This abatement action would leave the facility�s direct emissions intensity to 0.48 t CO2e/t cement. In present values, assuming a 10% discount rate, they would result in savings of US94 million outlay. Despite the apparent technical and financial advantages, all measures together are unlikely to be adopted, since the plant studied is well advanced in its lifecycle and the parent company is experiencing financial constraints common to those in developing nations
Potential for ORC application in the Portuguese manufacturing industry
Dissertação para obtenção do Grau de Mestre em
Engenharia do Ambiente, perfil Gestão e Sistemas AmbientaisThe European Directive on Energy Efficiency (Directive 2012/27/EU) entered into force in 2012 to translate the EU ―20-20-20‖ Efficiency Target into binding legislation. Each Member State was obligated to set an indicative national energy efficiency target and to achieve a certain amount of final energy savings by 2016. The second Portuguese National Action Plan for Energy Efficiency (PNAEE 2016) defines a target of 8.2% for savings on final energy consumption by 2016. Savings in Industry account for 24% of the target, but less than half of it was executed through the former Plan (PNAEE 2008-2015), by the end of 2010.
Worthwhile energy saving opportunities remains such as the recovery of the great amounts of wasted heat in industrial processes. Some technologies have been proposed to generate electricity from low temperature heat sources, among which the Organic Rankine Cycle (ORC).
The present work assesses the wasted heat in some sectors of the Portuguese manufacture industry and the potential to implement ORC systems. The methodology developed was based on the analysis of 116 industrial plants through energy audits and other documents. The 50 plants that revealed potential for ORC implementation were the base for estimations and represent 16% of the manufacture industry total energy consumption in 2010.
The national support schemes for power generation from renewable resources and cogeneration do not contemplate specifically the electricity production through waste heat recovery. Therefore, the country lacks on an appropriate framework. This study provides a preliminary assessment of the benefits reachable through waste heat-to-power generation and intends to help focus future efforts by the government on the inclusion of ORC in national strategies as an energy efficiency measure in Industry.
A total of 8 sectors were analysed but only 4 are included in the final universe: Ceramic, Cement, Basic metals and Wood & Cork. For these, ORC units of 48 kWe to 3.3 MWe installed power are feasible, showing payback times typically between 2 and 6 years.
For an estimated total investment of 104 M€ in ORC systems in the Ceramic, Cement, Basic metals and Wood & Cork industries, about 37 MWe installable power could mean executing 5.2 to 6.6% of the Portuguese 2016 Target of savings on Final Energy consumption in Industry, with associated avoided emissions of 132 kt CO2e/year
ANALISIS EFISIENSI BOILER PADA WASTE HEAT RECOVERY POWER GENERATION (WHRPG) PT. SEMEN PADANG
ABSTRAK
Waste Heat Recovery Power Generation (WHRPG) merupakan sebuah teknologi pembangkit listrik tenaga uap. Dimana memanfaatkan panas buangan dari kiln dan suspension preheater. Untuk memanfaatkan panas buangan ini, PT. Semen Padang mendirikan WHRPG pada pabrik Indarung V. WHRPG di pabrik Indarung V PT. Semen Padang berkapasitas maksimal sekitar 8,5 MW. Pada WHRPG PT. Semen Padang, terdapat Boiler sebagai salah satu komponen penting dalam sistem kerja WHRPG dan telah beroperasi sejak commissioning pada Oktober 2011. Mengingat telah 10 tahun boiler ini beroperasi, tentunya ada masalah yang akan menyebabkan boiler mengalami penurunan performa atau efisiensi. Oleh karena itu perlu dilakukan analisa terkait kinerja boiler untuk menghitung efisiensi boiler sekarang dengan kondisi boiler ideal. Efisiensi dari boiler merupakan indikator baik buruknya kinerja dari boiler. Kemudian dilakukan perbandingan dari kinerja boiler, perbandingan yang dilakukan adalah dengan membandingkan kerja aktual (data dari Februari 2022) dan kerja ideal (data saat commissioning, Maret 2013) dari boiler. Dari penelitian yang dilakukan, didapatkan efisiensi dari boiler WHRPG, yaitu pada saat commissioning (Maret 2013) efisiensi dari AQC boiler adalah 88,19% dan pada Februari 2022 sebesar 75,70%, tejadi penuranan efisiensi dari AQC Boiler sebesar 12,49%. Sedangkan pada SP Boiler , pada saat commissioning ( Maret 2013 ) nilai efisiensi sebesar 92,48%, dan pada Februari 2022 didapatkan nilai efisiensi sebesar 70,86%, tejadi penuranan efisiensi dari SP Boiler sebesar 21,62%. Secara umum efisiensi dari boiler WHRPG PT. Semen Padang mengalami penurunan dari nilai efisiensi yang didapatkan saat commissioning, sehingga diperlukan peninjauan Kembali terkait kinerja komponen ini.
Kata Kunci : Panas Buangan, Boiler, Efisiensi, Kerja Aktual dan Ideal Boile
A Comparative Study of Green Technology in Cement Industry
The insufficiency of infrastructure is the main bottlenecks in Indonesian society that prevent higher economic growth, as it weakens connectivity hence increasing logistics costs, making businesses less competitive, and also initiating social problems. Then the Indonesian government has given more attention to infrastructure development in order to enhance the economic growth. Cement industry is one of the industries that are very important in supporting the development of infrastructure and property. However, a large number of demonstrations against the operation of a cement factory have been arising from some protest and communities (Civil Society Organization/LSM) due to the environmental issues. In general, every ton of Ordinary Portland Cement (OPC) that is manufactured releases on a similar amount of CO2 into the atmosphere, or for roughly 6% of all human-generated greenhouse gas emissions. A developed production method that minimizes or eliminates CO2 emissions from cement manufacturing process is essential. Innovation on green or environmentally technology in cement industry with the focus on green energy (use of renewable energy sources or alternative fuel and higher energy efficiency), green products (use of an industrial waste as raw material), and green processes (reducing waste generation and conserving water, hence improving operational efficiency and lowering costs) become the global trends. In this study, the latest developments in eco-friendly technologies of the mining/quarrying operations and cement manufacturing that will be operated in Rembang by PT Semen Indonesia will be described and compared with the other countries. Existing technologies in the European cement industry has made significant progress in reducing the environmental impact of the industry. It is including the rehabilitation of the quarry to protect and promote biodiversity, more efficient clinker and cement production processes that reduce greenhouse emissions, provide waste utilization, and produce innovative concrete which can reduce the energy consumption of buildings and roads. Cement factory that will be operated in Rembang by PT Semen Indonesia is applying a modern environmentally friendly plant with the latest technology and a higher efficiency than another cement factory in Asia (more efficient use of water, chemicals, fuel and electricity). Quarrying methods will be used a Zero Run Off concepts, in which the ground water is carefully managed to prevent the discharge from the mine area, then the amount of ground water is increased. In addition to the utilization of renewable energy biomass as an alternative fuel, they also developed technology that converts the hot exhaust gasses into electrical energy through the Waste Heat Recovery Power Generation (WHRPG) project. Then, these technologies will become a pioneer and a standard for the construction of a new cement industry in Indonesia. Direct effect of the cement factory operation to the local communities will also be discussed.
KOORDINASI RELAY PROTEKSI OVER CURRENT RELAY (OCR) MENGGUNAKAN ANALISA KARAKTERISTIK ARUS-WAKTU PADA WHRPG PT. SEMEN PADANG
Energi listrik memegang peranan penting pada pada kehidupan sehari-hari. Dalam sektor perindustrian hampir semua peralatan menggunakan energi listrik agar dapat beroperasi. Selain memiliki manfaat pada kehidupan sehari-hari, penggunaan enrgi listrik juga memiliki tingkat bahaya atau kondisi abnormal jika tidak digunakan dengan hati-hati dan terarah. Salah satu contoh kondisi abnormal yaitu gangguan hubung singkat. Untuk mengurangi kondisi abnormal pada penggunaan energi listrik maka diperlukan sebuah sistem yang berfungsi untuk melindungi yang disebut sistem proteksi. Salah satu alat proteksi yang berfungsi untuk mengamankan gangguan hubung singkat adalh relai arus lebih. Relai ini dapat mengamankan arus lebih karena gangguan fasa-fasa dengan menggunakan Over Current Relay dan arus lebih karena gangguan fasa tanah menggunakan Ground Fault Relay. Pada penelitian ini akan dibahas mengenai simulasi arus gangguan hubung singkat menggunakan software ETAP 12.6.0 dimana hasil simulasi ini akan digunakan untuk settingan relay arus lebih. Pada penelitian simulasi koordinasi OCR dan GFR berdasarkan hasil setting perhitungan didapatkan kurva karaktersitik arus dan waktu. Berdasarkan kurva karakteritik arus dan waktu ini dapat dianalisa bahwa koordinasi OCR dan GFR telah baik.
Kata Kunci : Short Circuit, OCR, GFR, TM
ANALISIS TERMAL SIKLUS UAP CONDENSING TURBINE DAN COMBINED CYCLE UNTUK WASTE HEAT RECOVERY PADA PT. ASAHIMAS FLAT GLASS, TBK
PT. Asahimas Flat Glass, Tbk. merupakan industri besar yang bergerak pada proses pembuatan kaca. PT. Asahimas Flat Glass, Tbk. Sidoarjo memiliki kapasitas produksi sebesar 300.000 ton/tahun. Proses pembuatan kaca mengalami beberapa tahap pemrosesan terutama pada tahap furnace. Tahap furnace menggunakan bahan bakar gas dan merupakan tahap awal dari proses pembuatan float glass. PT. Asahimas Flat Glass, Tbk memiliki dua furnace yaitu jalur A1 dan A2 dengan bahan bakar yang digunakan adalah gas. Panas buang (waste heat) dengan temperatur berkisar 400oC – 500oC dibuang melalui stack. Agar panas buang tersebut tidak mencemari lingkungan, maka perlu ada pemanfaatan lanjut. Pemanfaatan panas buang dapat dilakukan dengan berbagai cara salah satunya dengan mengubah waste heat menjadi energi listrik. Organic Rankine Cycle merupakan salah satu sistem pembangkit daya yang menggunakan panas buang. Organic Rankine Cycle menggunakan fluida kerja organik diantaranya silicon oil, hydrocarbon, fluorocarbon dan refrigerant. Hal–hal diatas akan dianalisis lebih lanjut pada tugas akhir ini.
Tahap awal pengerjaan tugas akhir ini adalah identifikasi permasalahan dan studi literatur. Tahap kedua adalah perhitungan nilai temperature gabungan, pembuatan model serta penyelesaian dengan software Cycle Tempo 5.1. Variasi massa uap yang
digunakan adalah 4.3 kg/s, 4.6 kg/s, 5 kg/s. Selain variasi massa uap, jenis refrigeran yang digunakan R-11, R113, R114. Pada sistem ORC, temperatur evaporating dan temperatur flue gas pada stack juga divariasi. Temperatur evaporating dinaikan menjadi 160oC dan temperatur stack diturunkan menjadi 120oCTahap terakhir adalah hasil pengolahan data tersebut disajikan secara kuantitatif berupa grafik dan tabel.
Penelitian ini berawal pada temperatur evaporating sebesar 140oC. Grafik yang dihasilkan menunjukan bahwa semakin besar massa uap, maka semakin besar pula performa combined cycle. Kondisi ini dikarenakan kontribusi yang cukup dominan dari sisi steam turbine, sedangkan pada ORC menghasilkan performa yang lebih kecil. Performa combined cycle yang paling besar adalah 5.89 MW dengan laju alir massa uap 5kg/s. Selain itu, temperatur evaporating serta temperatur flue gas pada stack berpengaruh terhadap performa combined cycle. Temperatur evaporating sebesar 160oC menghasilkan performa combined cycled hingga 5.96 MW dengan laju alir massa uap 5kg/s. Penurunan temperatur flue gas menjadi 120oC menghasilkan daya terbesar yaitu 6.30 MW. Peninjauan selanjutnya yaitu terhadap pemilihan refrigeran. Dari grafik yang dihasilkan, menunjukan bahwa refrigeran jenis R-11 dapat menghasilkan daya ORC yang paling besar karena perbedaan enthalpy yang terbesar.
=========================================================================================================
PT. Asahimas Flat Glass, Tbk. is one of the biggest
industries which produces glasses. Production capacity of PT.
Asahimas Flat Glass, Tbk. Sidoarjo is 300.000 ton/year. The most
important process in glass production is the furnace section. This
section uses gas as fuel and the first step in production float
glass. PT. Asahimas Flat Glass, Tbk has two furnaces, line A1
and A2. The furnace’s waste heat, which still has a temperature
around 400oC – 500oC, is often released directly to the
surrounding using stack. To reduce air pollution caused by the
high waste heat temperature, we must implement a waste heat
reusing scheme, such as by using an ORC to convert waste heat
as the heat source into electricity. The purpose of waste heat
recovery is reducing air pollution. Waste heat from furnace
become heat source to produce electricity. Organic Rankine
Cycle is power plant system which is use waste heat as heat
source. Organic Rankine Cycle uses organic fluids, for instance
silicon oil, hydrocarbon, fluorocarbon and refrigerant, as its
working fluid. In this final project we will analyze and explain all
aforementioned conditions in implementing ORC as a waste heat
recovery scheme
The first step to do this final project is problem
identification and literary study. Then we will calculate both
stacks temperatures, make a plant model, finishing and evaluate
using software Cycle Tempo 5.1. Variation of steam mass flow
rate used are 4.3 kg/s, 4.6 kg/s, 5 kg/s. In conjunction to the steam
mass flow rate variation, we will also use R-11, R113 and R114
as the work fluid variation. In ORC, the evaporating temperature
and both stacks flue gas temps will also be variated, with
evaporating temperature increased to 160oC and the stacks temps
decreased to 120oC. The final step in this final project is to plot
the results into graphs and tables Final step is analyzing data and
showing graph also table.
The starting value for the evaporating temperature in this
research is set to be 140. The resulting graph shows that an
increase of steam mass flow rate will also increase the combined
cycle’s performance. The highest combined cycle perform is 5.89
MW with steam mass flow rate 5 kg/s. Both the evaporating
temperature and the stacks’ flue gas temperature also yield a
change in the combine cycle performance; in a steam mass flow
rate of 5 kg/s, a higher evaporating temperature (160oC) results
in a higher combined cycle performance (5.96 MW), while,
similarly, a lower flue gas temperature (120oC) also yields a
higher combined cycle performance (6.3 MW). By varying the
working fluids, it is then found that R11 can produce the highest
performance, due to its ability to create high enthalpy difference
- …
