55,275 research outputs found

    Red-emitting Ba2Si5N8Eu2+ conversion phosphor: A new selection for enhancing the optical performance of the in-cup packaging MCW-LEDs

    Get PDF
    In this research, the influence of the red-emitting Ba2Si5N8Eu2+ convention phosphor on the optical performance of the 7,000K and 7,700K in-cup packaging multi-chip white LEDs (MCW-LEDs) is investigated. The effect of the red-emitting Ba2Si5N8Eu2+ convention phosphor is demonstrated based on Mie Theory by Mat Lab and Light Tools software. The research results indicated that the optical performance of MCW-LEDs was crucially affected by the red-emitting Ba2Si5N8Eu2+ phosphor's concentration. This paper provides an essential recommendation for selecting and developing the phosphor materials for MW-LEDs manufacturing.Web of Science51art. no. 148615

    Interplay between multiple scattering, emission, and absorption of light in the phosphor of a white light-emitting diode

    Get PDF
    We study light transport in phosphor plates of white light-emitting diodes (LEDs). We measure the broadband diffuse transmission through phosphor plates of varying YAG:Ce3+^{3+} density. We distinguish the spectral ranges where absorption, scattering, and re-emission dominate. Using diffusion theory, we derive the transport and absorption mean free paths from first principles. We find that both transport and absorption mean free paths are on the order of the plate thickness. This means that phosphors in commercial LEDs operate well within an intriguing albedo range around 0.7. We discuss how salient parameters that can be derived from first principles control the optical properties of a white LED.Comment: 14 pages, 9 figure

    Colour appearance in led lighting

    Get PDF
    The paper shows a comparative study of colour comparison between white LED lamps and conventional ones (incandescent and compact fluorescent). The LED lamps used were a model designed by the direct replaces of halogen incandescent lamps. The technology used for white light generation was based on short waves emitter chips and secondary emission. As result of the experience, significant object colour coordinates displacements in LEDs lighting were observed. As it was predictable from LEDs spectral distribution, orange – red colours were poorly reproduced. However, the subjective experience did not show a remarkable preference to the conventional light sources. Furthermore, several observers qualified the objects under LEDs light as “more naturals”

    Effect of the green-emitting CaF2:Ce3+,Tb3+ phosphor particles’ size on color rendering index and color quality scale of the in-cup packaging multichip white LEDs

    Get PDF
    In this paper, we investigate the effect of the green-emitting CaF2:Ce (3+), Tb (3+) phosphor particle's size on the color rendering index (CRI) and the color quality scale (CQS) of the in-cup packaging multichip white LEDs (MCW-LEDs). For this purpose, 7000K and 8500K in-cup packaging MCW-LEDs is simulated by the commercial software Light Tools. Moreover, scattering process in the phosphor layers is investigated by using Mie Theory with Mat Lab software. Finally, the research results show that the green-emitting CaF2: Ce (3+), Tb (3+) phosphor's size crucially influences on the CRI and CQS. From that point of view, CaF2: Ce (3+), Tb (3+) can be proposed as a potential practical direction for manufacturing the in-cup packaging phosphor WLEDs.Web of Science13235134

    Cathodic and Anodic Material Diffusion in Polymer/Semiconductor-Nanocrystal Composite Devices

    Get PDF
    In the present day, the information technologies and telecommunications sector continually increase their demand for low cost, low power consumption, high performance electroluminescent devices for display applications. Furthermore, general lighting applications, such as white light and large array colour displays, would also benefit from an increase in the overall efficiency. Several technologies are being investigated to fulfill these needs, such as organic light emitting diodes (OLED), polymeric light emitting diodes (PLED) and field effect emission devices. A new and promising technology is light emitting devices (LEDs) based on nanostructured materials. With organic LEDs (OLEDs) already making an impact on the market in an increasingly large number of applications, hybrid technologies based on organic/inorganic nano-composites are a potential the next step. The incorporation of highefficiency fluorescent semiconductor nanoparticles has been shown to have a beneficial effect on device performance, [1] modify the colour output from the device 2 and provide a simplified route to generation of LED type devices. [3

    Colorimetry and efficiency of white LEDs : Spectral width dependence

    Get PDF
    The potential colour rendering capability and efficiency of white LEDs constructed by a combination of individual red, green and blue (RGB) LEDs are analysed. The conventional measurement of colour rendering quality, the colour rendering index (CRI), is used as well as a recently proposed colour quality scale (CQS), designed to overcome some of the limitations of CRI when narrow-band emitters are being studied. The colour rendering performance is maximised by variation of the peak emission wavelength and relative intensity of the component LEDs, with the constraint that the spectral widths follow those measured in actual devices. The highest CRI achieved is 89.5, corresponding to a CQS value of 79, colour temperature of 3800 K and a luminous efficacy of radiation (LER) of 365 lm/W. By allowing the spectral width of the green LED to vary the CRI can be raised to 90.9, giving values of 82.5 and 370 lm/W for the CQS and LER, respectively. The significance of these values are discussed in terms of optimising the possible performance of RGB LEDs

    An Efficient Synthesis and Photoelectric Properties of Green Carbon Quantum Dots with High Fluorescent Quantum Yield

    Get PDF
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)To greatly improve the production quality and efficiency of carbon quantum dots (CQDs), and provide a new approach for the large-scale production of high-quality CQDs, green carbon quantum dots (g-CQDs) with high product yield (PY) and high fluorescent quantum yield (QY) were synthesized by an efficient one-step solvothermal method with 2,7-dihydroxynaphthalene as the carbon source and ethylenediamine as the nitrogen dopant in this study. The PY and QY of g-CQDs were optimised by adjusting reaction parameters such as an amount of added ethylenediamine, reaction temperature, and reaction duration. The results showed that the maximum PY and QY values of g-CQDs were achieved, which were 70.90% and 62.98%, respectively when the amount of added ethylenediamine, reaction temperature, and reaction duration were 4 mL, 180 °C, and 12 h, respectively. With the optimised QY value of g-CQDs, white light emitting diodes (white LEDs) were prepared by combining g-CQDs and blue chip. The colour rendering index of white LEDs reached 87, and the correlated colour temperature was 2520 K, which belongs to the warm white light area and is suitable for indoor lighting. These results indicate that g-CQDs have potential and wide application prospects in the field of white LEDs.Peer reviewedFinal Published versio

    Color Point Tuning for (Sr,Ca,Ba) Si2O2N2:Eu2+ for White Light LEDs

    Get PDF
    Color point tuning is an important challenge for improving white light LEDs. In this paper, the possibilities of color tuning with the efficient LED phosphor Sr1−x−y−zCaxBaySi2O2N2:Euz2+ (0 ≤ x, y ≤ 1; 0.005 ≤ z ≤ 0.16) are investigated. The emission color can be tuned in two ways: by changing Eu2+ concentration and by substitution of the host lattice cation Sr2+ by either Ca2+ or Ba2+. The variation in the Eu2+ concentration shows a red shift of the emission upon increasing the Eu concentration above 2%. The red shift is explained by energy migration and energy transfer to Eu2+ ions emitting at longer wavelengths. Along with this (desired) red shift there is an (undesired) lowering of the quantum efficiency and the thermal quenching temperature due to concentration quenching. Partial substitution of Sr2+ by either Ca2+ or Ba2+ also results in a red-shifted Eu2+ emission. For Ca2+ this is expected and the red shift is explained by an increased crystal field splitting for Eu2+ on the (smaller) Ca2+ cation site. For Ba2+, the red shift is surprising. Often, a blue shift of the fd emission is observed in case of substitution of Sr2+ by the larger Ba2+ cation. The Eu2+ emission in the pure BaSi2O2N2 host lattice is indeed blue-shifted. Temperature dependent luminescence measurements show that the quenching temperature drops upon substitution of Sr by Ca, whereas for Ba substitution, the quenching temperature remains high. Color tuning by partial substitution of Sr2+ by Ba2+ is therefore the most promising way to shift the color point of LEDs while retaining the high quantum yield and high luminescence quenching temperature
    corecore