21,065 research outputs found
Safety arguments for next generation location aware computing
Concerns over the accuracy, availability, integrity and
continuity of Global Navigation Satellite Systems (GNSS)
have limited the integration of GPS and GLONASS for
safety-critical applications. More recent augmentation
systems, such as the European Geostationary Navigation
Overlay Service (EGNOS) and the North American Wide
Area Augmentation System (WAAS) have begun to address
these concerns. Augmentation architectures build on the
existing GPS/GLONASS infrastructures to support locationbased services in Safety of Life (SoL) applications. Much of the technical development has been directed by air traffic management requirements, in anticipation of the more extensive support to be offered by GPS III and Galileo. WAAS has already been approved to provide vertical guidance against ICAO safety performance criteria for aviation applications. During the next twelve months, we will see the full certification of EGNOS for SoL applications.
This paper identifies strong similarities between the safety
assessment techniques used in Europe and North America.
Both have relied on hazard analysis techniques to derive
estimates of the Probability of Hazardously Misleading
Information (PHMI). Later sections identify significant
differences between the approaches adopted in application
development. Integrated fault trees have been developed by
regulatory and commercial organisations to consider both
infrastructure hazards and their impact on non-precision
RNAV/VNAV approaches using WAAS. In contrast,
EUROCONTROL and the European Space Agency have
developed a more modular approach to safety-case
development for EGNOS. It remains to be seen whether the
European or North American strategy offers the greatest
support as satellite based augmentation systems are used
within a growing range of SoL applications from railway
signalling through to Unmanned Airborne Systems. The key
contribution of this paper is to focus attention on the safety
arguments that might support this wider class of location
based services
Oyster Bed Mapping in the Great Bay Estuary, 2012-2013
Six major oyster beds (reefs) in New Hampshire are mapped periodically to assess wild oyster populations in the Great Bay Estuary. Data on the spatial extent of the beds are combined with density and other measures to estimate the abundances of live oysters. The first objective of the present project was to determine the spatial extent of these six oyster beds, and to compare the 2012/2013 data with previous mapping efforts. A second objective was twofold: to map the extent of live oyster bottom at selected recent oyster restoration sites, and to map areas where oyster beds have been known to occur historically but not recently. Towed underwater video methods, as used in previous oyster mapping efforts in New Hampshire, were used for this project. All recorded video was classified into three categories: ”reef” (\u3e20% shell cover and live oysters visible); ”sparse shell” (
Two of the natural beds (Nannie Island [2012: 32.4 ac] and Oyster River [2012: 1.6 ac]) had similar total bottom area coverage compared to most previous mapping efforts. Three beds (Adams Point [2012: 15.9 ac], Squamscott River [2012: 7.7 ac] and Woodman Point [2012: 15.4 ac]) had substantially greater area coverage compared to previous surveys. In all three cases, however, the increases were likely due to additional adjacent areas being surveyed. In contrast to the others, the Piscataqua River bed appears to have substantially decreased in bottom area coverage (2012: 7.0 ac) compared to previous surveys.
Selected oyster restoration sites were also video surveyed in 2013 to determine bottom area coverage that could be considered “reef” and therefore considered as part of the overall oyster resource in New Hampshire. Restoration sites in the Lamprey River, Oyster River (3 sites), and at Fox Point in Little Bay were imaged. Due to poor image quality, full bottom area coverage could not be determined for any of the sites. Nonetheless, substantial areas of at least “sparse shell” bottom, and live oysters in some areas were recorded at all sites. These restoration sites as well as additional sites are scheduled for video surveying and quantitative sampling in 2013.
The third focus of the project was to survey areas where oyster beds historically occurred. Of the four general areas surveyed, live oyster reefs were found in two areas: Lamprey River (0.9 ac) and mid-Great Bay (35.2 ac). In sum, these two areas represent a major addition to the known live oyster bottom in the state. Moreover, these findings strongly suggest that live oyster reefs may be in other areas where oysters have not been known to exist in recent years.
Overall, this project has added substantially to our knowledge of where live oysters occur in New Hampshire as well as the total bottom area coverage. A total of 120 acres of bottom area classified as “reef” was mapped. Additionally, the extent (perhaps 100 ac or more) of bottom area that had sparse shell but apparently few or no live oysters in mid-Great Bay bed and in the Nannie Island/Woodman Point area is important because these areas represent excellent oyster restoration opportunities. However, they will need to be mapped in more detail to sufficiently design future projects
Meso-scale modelling of 3D woven composite T-joints with weave variations
A meso-scale modelling framework is proposed to simulate the 3D woven fibre architectures and the mechanical performance of the composite T-joints, subjected to quasi-static tensile pull-off loading. The proposed method starts with building the realistic reinforcement geometries of the 3D woven T-joints at the mesoscale, of which the modelling strategy is applicable for other types of geometries with weave variations at the T-joint junction. Damage modelling incorporates both interface and constituent material damage, in conjunction with a continuum damage mechanics approach to account for the progressive failure behaviour. With a voxel based cohesive zone model, the proposed method is able to model mode I delamination based on the voxel mesh technique, which has advantages in meshing. Predicted results are in good agreement with experimental data beyond initial failure, in terms of load-displacement responses, failure events, damage initiation and propagation. The significant effect of fibre architecture variations on mechanical behaviour is successfully predicted through this modelling method without any further correlation of input parameters in damage model. This predictive method will facilitate the design and optimisation of 3D woven T-joint preforms
Generating high precision ionospheric ground-truth measurements
A method, apparatus and article of manufacture provide ionospheric ground-truth measurements for use in a wide-area augmentation system (WAAS). Ionospheric pseudorange/code and carrier phase data as primary observables is received by a WAAS receiver. A polynomial fit is performed on the phase data that is examined to identify any cycle slips in the phase data. The phase data is then leveled. Satellite and receiver biases are obtained and applied to the leveled phase data to obtain unbiased phase-leveled ionospheric measurements that are used in a WAAS system. In addition, one of several measurements may be selected and data is output that provides information on the quality of the measurements that are used to determine corrective messages as part of the WAAS system
- nucleus relativistic mean field potentials consistent with kaonic atoms
atomic data are used to test several models of the nucleus
interaction. The t() optical potential, due to coupled channel
models incorporating the (1405) dynamics, fails to reproduce these
data. A standard relativistic mean field (RMF) potential, disregarding the
(1405) dynamics at low densities, also fails. The only successful
model is a hybrid of a theoretically motivated RMF approach in the nuclear
interior and a completely phenomenological density dependent potential, which
respects the low density theorem in the nuclear surface region. This best-fit
optical potential is found to be strongly attractive, with a depth of 180
\pm 20 MeV at the nuclear interior, in agreement with previous phenomenological
analyses.Comment: revised, Phys. Rev. C in pres
AATR an ionospheric activity indicator specifically based on GNSS measurements
This work reviews an ionospheric activity indicator useful for identifying disturbed periods affecting the performance of Global Navigation Satellite System (GNSS). This index is based in the Along Arc TEC Rate (AATR) and can be easily computed from dual-frequency GNSS measurements. The AATR indicator has been assessed over more than one Solar Cycle (2002–2017) involving about 140 receivers distributed world-wide. Results show that it is well correlated with the ionospheric activity and, unlike other global indicators linked to the geomagnetic activity (i.e. DST or Ap), it is sensitive to the regional behaviour of the ionosphere and identifies specific effects on GNSS users. Moreover, from a devoted analysis of different Satellite Based Augmentation System (SBAS) performances in different ionospheric conditions, it follows that the AATR indicator is a very suitable mean to reveal whether SBAS service availability anomalies are linked to the ionosphere. On this account, the AATR indicator has been selected as the metric to characterise the ionosphere operational conditions in the frame of the European Space Agency activities on the European Geostationary Navigation Overlay System (EGNOS). The AATR index has been adopted as a standard tool by the International Civil Aviation Organization (ICAO) for joint ionospheric studies in SBAS. In this work we explain how the AATR is computed, paying special attention to the cycle-slip detection, which is one of the key issues in the AATR computation, not fully addressed in other indicators such as the Rate Of change of the TEC Index (ROTI). After this explanation we present some of the main conclusions about the ionospheric activity that can extracted from the AATR values during the above mentioned long-term study. These conclusions are: (a) the different spatial correlation related with the MOdified DIP (MODIP) which allows to clearly separate high, mid and low latitude regions, (b) the large spatial correlation in mid latitude regions which allows to define a planetary index, similar to the geomagnetic ones, (c) the seasonal dependency which is related with the longitude and (d) the variation of the AATR value at different time scales (hourly, daily, seasonal, among others) which confirms most of the well-known time dependences of the ionospheric events, and finally, (e) the relationship with the space weather events.Postprint (published version
- …
