9,306 research outputs found

    ACCDIST: A Metric for comparing speakers' accents

    Get PDF
    This paper introduces a new metric for the quantitative assessment of the similarity of speakers' accents. The ACCDIST metric is based on the correlation of inter-segment distance tables across speakers or groups. Basing the metric on segment similarity within a speaker ensures that it is sensitive to the speaker's pronunciation system rather than to his or her voice characteristics. The metric is shown to have an error rate of only 11% on the accent classification of speakers into 14 English regional accents of the British Isles, half the error rate of a metric based on spectral information directly. The metric may also be useful for cluster analysis of accent groups

    Speech vocoding for laboratory phonology

    Get PDF
    Using phonological speech vocoding, we propose a platform for exploring relations between phonology and speech processing, and in broader terms, for exploring relations between the abstract and physical structures of a speech signal. Our goal is to make a step towards bridging phonology and speech processing and to contribute to the program of Laboratory Phonology. We show three application examples for laboratory phonology: compositional phonological speech modelling, a comparison of phonological systems and an experimental phonological parametric text-to-speech (TTS) system. The featural representations of the following three phonological systems are considered in this work: (i) Government Phonology (GP), (ii) the Sound Pattern of English (SPE), and (iii) the extended SPE (eSPE). Comparing GP- and eSPE-based vocoded speech, we conclude that the latter achieves slightly better results than the former. However, GP - the most compact phonological speech representation - performs comparably to the systems with a higher number of phonological features. The parametric TTS based on phonological speech representation, and trained from an unlabelled audiobook in an unsupervised manner, achieves intelligibility of 85% of the state-of-the-art parametric speech synthesis. We envision that the presented approach paves the way for researchers in both fields to form meaningful hypotheses that are explicitly testable using the concepts developed and exemplified in this paper. On the one hand, laboratory phonologists might test the applied concepts of their theoretical models, and on the other hand, the speech processing community may utilize the concepts developed for the theoretical phonological models for improvements of the current state-of-the-art applications

    Towards Automatic Speech Identification from Vocal Tract Shape Dynamics in Real-time MRI

    Full text link
    Vocal tract configurations play a vital role in generating distinguishable speech sounds, by modulating the airflow and creating different resonant cavities in speech production. They contain abundant information that can be utilized to better understand the underlying speech production mechanism. As a step towards automatic mapping of vocal tract shape geometry to acoustics, this paper employs effective video action recognition techniques, like Long-term Recurrent Convolutional Networks (LRCN) models, to identify different vowel-consonant-vowel (VCV) sequences from dynamic shaping of the vocal tract. Such a model typically combines a CNN based deep hierarchical visual feature extractor with Recurrent Networks, that ideally makes the network spatio-temporally deep enough to learn the sequential dynamics of a short video clip for video classification tasks. We use a database consisting of 2D real-time MRI of vocal tract shaping during VCV utterances by 17 speakers. The comparative performances of this class of algorithms under various parameter settings and for various classification tasks are discussed. Interestingly, the results show a marked difference in the model performance in the context of speech classification with respect to generic sequence or video classification tasks.Comment: To appear in the INTERSPEECH 2018 Proceeding

    Pauses and the temporal structure of speech

    Get PDF
    Natural-sounding speech synthesis requires close control over the temporal structure of the speech flow. This includes a full predictive scheme for the durational structure and in particuliar the prolongation of final syllables of lexemes as well as for the pausal structure in the utterance. In this chapter, a description of the temporal structure and the summary of the numerous factors that modify it are presented. In the second part, predictive schemes for the temporal structure of speech ("performance structures") are introduced, and their potential for characterising the overall prosodic structure of speech is demonstrated

    Reducing Audible Spectral Discontinuities

    Get PDF
    In this paper, a common problem in diphone synthesis is discussed, viz., the occurrence of audible discontinuities at diphone boundaries. Informal observations show that spectral mismatch is most likely the cause of this phenomenon.We first set out to find an objective spectral measure for discontinuity. To this end, several spectral distance measures are related to the results of a listening experiment. Then, we studied the feasibility of extending the diphone database with context-sensitive diphones to reduce the occurrence of audible discontinuities. The number of additional diphones is limited by clustering consonant contexts that have a similar effect on the surrounding vowels on the basis of the best performing distance measure. A listening experiment has shown that the addition of these context-sensitive diphones significantly reduces the amount of audible discontinuities
    • …
    corecore