3,813 research outputs found

    Phase diagram of the 2D 4^4He in the density-temperature plane

    Get PDF
    Thin 4^4He films adsorbed to weakly attractive substrates form nearly 2D layers. We describe the vortices in 2D superfluid 4^4He like quasiparticles. With the aid of a variational many-body calculation we estimate their inertial mass and describe their interactions with the 4^4He particles and other vortices. Third sound measurements revealed anomalous behavior below the BKT-phase transition temperature. We ascribe this to the sound mode traveling in the fluid of vortex-antivortex pairs. These pairs forms a crystal (or liquid crystal) when the film thickness increases, the third sound mode splits into two separate modes as seen in experiments. Our many-body calculation predicts the critical density, at which the phase transition into the vortex-antivortex state at zero temperature occurs. We also describe the phase diagram of thin 4^4He films.Comment: Contribution paper to LT21 (to be published in Physica B

    Critical angular velocity for vortex lines formation

    Full text link
    For helium II inside a rotating cylinder, it is proposed that the formation of vortex lines of the frictionless superfluid component of the liquid is caused by the presence of the rotating quasi-particles gas. By minimising the free energy of the system, the critical value Omega_0 of the angular velocity for the formation of the first vortex line is determined. This value nontrivially depends on the temperature, and numerical estimations of its temperature behaviour are produced. It is shown that the latent heat for a vortex formation and the associated discontinuous change in the angular momentum of the quasi-particles gas determine the slope of Omega_0 (T) via some kind of Clapeyron equation.Comment: 16 page

    Kolmogorov Spectrum of Quantum Turbulence

    Full text link
    There is a growing interest in the relation between classical turbulence and quantum turbulence. Classical turbulence arises from complicated dynamics of eddies in a classical fluid. In contrast, quantum turbulence consists of a tangle of stable topological defects called quantized vortices, and thus quantum turbulence provides a simpler prototype of turbulence than classical turbulence. In this paper, we investigate the dynamics and statistics of quantized vortices in quantum turbulence by numerically solving a modified Gross-Pitaevskii equation. First, to make decaying turbulence, we introduce a dissipation term that works only at scales below the healing length. Second, to obtain steady turbulence through the balance between injection and decay, we add energy injection at large scales. The energy spectrum is quantitatively consistent with the Kolmogorov law in both decaying and steady turbulence. Consequently, this is the first study that confirms the inertial range of quantum turbulence.Comment: 14pages, 24 figures and 1 table. Appeared in Journal of the Physical Society of Japan, Vol.74, No.12, p.3248-325

    Preferential accumulation of bubbles in Couette-Taylor flow patterns

    Get PDF
    We investigate the migration of bubbles in several flow patterns occurring within the gap between a rotating inner cylinder and a concentric fixed outer cylinder. The time-dependent evolution of the two-phase flow is predicted through three-dimensional Euler-Lagrange simulations. Lagrangian tracking of spherical bubbles is coupled with direct numerical simulation of the Navier-Stokes equations. We assume that bubbles do not influence the background flow (one-way coupling simulations). The force balance on each bubble takes into account buoyancy, added-mass, viscous drag and shear-induced lift forces. For increasing velocities of the rotating inner cylinder, the flow in the fluid gap evolves from the purely azimuthal steady Couette flow to Taylor toroidal vortices and eventually a wavy vortex flow. The migration of bubbles is highly dependent on the balance between buoyancy and centripetal forces (mostly due to the centripetal pressure gradient) directed toward the inner cylinder and the vortex cores. Depending on the rotation rate of the inner cylinder, bubbles tend to accumulate alternatively along the inner wall, inside the core of Taylor vortices or at particular locations within the wavy vortices. A stability analysis of the fixed points associated with bubble trajectories provides a clear understanding of their migration and preferential accumulation. The location of the accumulation points is parameterized by two dimensionless parameters expressing the balance of buoyancy, centripetal attraction toward the inner rotating cylinder, and entrapment in Taylor vortices. A complete phase diagram summarizing the various regimes of bubble migration is built. Several experimental conditions considered by Djéridi et al.1 are reproduced; the numerical results reveal a very good agreement with the experiments. When the rotation rate is further increased, the numerical results indicate the formation of oscillating bubble strings, as observed experimentally by Djéridi et al.2. After a transient state, bubbles collect at the crests or troughs of the wavy vortices. An analysis of the flow characteristics clearly indicates that bubbles accumulate in the low-pressure regions of the flow field
    corecore