13,540 research outputs found

    Volumetric reconstruction with compressed data

    Get PDF

    Real-time Assessment of Right and Left Ventricular Volumes and Function in Children Using High Spatiotemporal Resolution Spiral bSSFP with Compressed Sensing

    Get PDF
    Background: Real-time (RT) assessment of ventricular volumes and function enables data acquisition during free-breathing. However, in children the requirement for high spatiotemporal resolution requires accelerated imaging techniques. In this study, we implemented a novel RT bSSFP spiral sequence reconstructed using Compressed Sensing (CS) and validated it against the breath-hold (BH) reference standard for assessment of ventricular volumes in children with heart disease. Methods: Data was acquired in 60 children. Qualitative image scoring and evaluation of ventricular volumes was performed by 3 clinical cardiac MR specialists. 30 cases were reassessed for intra-observer variability, and the other 30 cases for inter-observer variability. Results: Spiral RT images were of good quality, however qualitative scores reflected more residual artefact than standard BH images and slightly lower edge definition. Quantification of Left Ventricular (LV) and Right Ventricular (RV) metrics showed excellent correlation between the techniques with narrow limits of agreement. However, we observed small but statistically significant overestimation of LV end-diastolic volume, underestimation of LV end-systolic volume, as well as a small overestimation of RV stroke volume and ejection fraction using the RT imaging technique. No difference in inter-observer or intra-observer variability were observed between the BH and RT sequences. Conclusions: Real-time bSSFP imaging using spiral trajectories combined with a compressed sensing reconstruction is feasible. The main benefit is that it can be acquired during free breathing. However, another important secondary benefit is that a whole ventricular stack can be acquired in ~20 seconds, as opposed to ~6 minutes for standard BH imaging. Thus, this technique holds the potential to significantly shorten MR scan times in children

    GPU-based Iterative Cone Beam CT Reconstruction Using Tight Frame Regularization

    Full text link
    X-ray imaging dose from serial cone-beam CT (CBCT) scans raises a clinical concern in most image guided radiation therapy procedures. It is the goal of this paper to develop a fast GPU-based algorithm to reconstruct high quality CBCT images from undersampled and noisy projection data so as to lower the imaging dose. For this purpose, we have developed an iterative tight frame (TF) based CBCT reconstruction algorithm. A condition that a real CBCT image has a sparse representation under a TF basis is imposed in the iteration process as regularization to the solution. To speed up the computation, a multi-grid method is employed. Our GPU implementation has achieved high computational efficiency and a CBCT image of resolution 512\times512\times70 can be reconstructed in ~5 min. We have tested our algorithm on a digital NCAT phantom and a physical Catphan phantom. It is found that our TF-based algorithm is able to reconstrct CBCT in the context of undersampling and low mAs levels. We have also quantitatively analyzed the reconstructed CBCT image quality in terms of modulation-transfer-function and contrast-to-noise ratio under various scanning conditions. The results confirm the high CBCT image quality obtained from our TF algorithm. Moreover, our algorithm has also been validated in a real clinical context using a head-and-neck patient case. Comparisons of the developed TF algorithm and the current state-of-the-art TV algorithm have also been made in various cases studied in terms of reconstructed image quality and computation efficiency.Comment: 24 pages, 8 figures, accepted by Phys. Med. Bio

    Blur resolved OCT: full-range interferometric synthetic aperture microscopy through dispersion encoding

    Get PDF
    We present a computational method for full-range interferometric synthetic aperture microscopy (ISAM) under dispersion encoding. With this, one can effectively double the depth range of optical coherence tomography (OCT), whilst dramatically enhancing the spatial resolution away from the focal plane. To this end, we propose a model-based iterative reconstruction (MBIR) method, where ISAM is directly considered in an optimization approach, and we make the discovery that sparsity promoting regularization effectively recovers the full-range signal. Within this work, we adopt an optimal nonuniform discrete fast Fourier transform (NUFFT) implementation of ISAM, which is both fast and numerically stable throughout iterations. We validate our method with several complex samples, scanned with a commercial SD-OCT system with no hardware modification. With this, we both demonstrate full-range ISAM imaging, and significantly outperform combinations of existing methods.Comment: 17 pages, 7 figures. The images have been compressed for arxiv - please follow DOI for full resolutio

    Deep learning cardiac motion analysis for human survival prediction

    Get PDF
    Motion analysis is used in computer vision to understand the behaviour of moving objects in sequences of images. Optimising the interpretation of dynamic biological systems requires accurate and precise motion tracking as well as efficient representations of high-dimensional motion trajectories so that these can be used for prediction tasks. Here we use image sequences of the heart, acquired using cardiac magnetic resonance imaging, to create time-resolved three-dimensional segmentations using a fully convolutional network trained on anatomical shape priors. This dense motion model formed the input to a supervised denoising autoencoder (4Dsurvival), which is a hybrid network consisting of an autoencoder that learns a task-specific latent code representation trained on observed outcome data, yielding a latent representation optimised for survival prediction. To handle right-censored survival outcomes, our network used a Cox partial likelihood loss function. In a study of 302 patients the predictive accuracy (quantified by Harrell's C-index) was significantly higher (p < .0001) for our model C=0.73 (95%\% CI: 0.68 - 0.78) than the human benchmark of C=0.59 (95%\% CI: 0.53 - 0.65). This work demonstrates how a complex computer vision task using high-dimensional medical image data can efficiently predict human survival
    • …
    corecore