3,940 research outputs found

    A Linear Formulation for Disk Conformal Parameterization of Simply-Connected Open Surfaces

    Full text link
    Surface parameterization is widely used in computer graphics and geometry processing. It simplifies challenging tasks such as surface registrations, morphing, remeshing and texture mapping. In this paper, we present an efficient algorithm for computing the disk conformal parameterization of simply-connected open surfaces. A double covering technique is used to turn a simply-connected open surface into a genus-0 closed surface, and then a fast algorithm for parameterization of genus-0 closed surfaces can be applied. The symmetry of the double covered surface preserves the efficiency of the computation. A planar parameterization can then be obtained with the aid of a M\"obius transformation and the stereographic projection. After that, a normalization step is applied to guarantee the circular boundary. Finally, we achieve a bijective disk conformal parameterization by a composition of quasi-conformal mappings. Experimental results demonstrate a significant improvement in the computational time by over 60%. At the same time, our proposed method retains comparable accuracy, bijectivity and robustness when compared with the state-of-the-art approaches. Applications to texture mapping are presented for illustrating the effectiveness of our proposed algorithm

    A Face Fairness Framework for 3D Meshes

    Full text link
    In this paper, we present a face fairness framework for 3D meshes that preserves the regular shape of faces and is applicable to a variety of 3D mesh restoration tasks. Specifically, we present a number of desirable properties for any mesh restoration method and show that our framework satisfies them. We then apply our framework to two different tasks --- mesh-denoising and mesh-refinement, and present comparative results for these two tasks showing improvement over other relevant methods in the literature.Comment: 15 page

    Compressed Sensing and Reconstruction of Unstructured Mesh Datasets

    Full text link
    Exascale computing promises quantities of data too large to efficiently store and transfer across networks in order to be able to analyze and visualize the results. We investigate Compressive Sensing (CS) as a way to reduce the size of the data as it is being stored. CS works by sampling the data on the computational cluster within an alternative function space such as wavelet bases, and then reconstructing back to the original space on visualization platforms. While much work has gone into exploring CS on structured data sets, such as image data, we investigate its usefulness for point clouds such as unstructured mesh datasets found in many finite element simulations. We sample using second generation wavelets (SGW) and reconstruct using the Stagewise Orthogonal Matching Pursuit (StOMP) algorithm. We analyze the compression ratios achievable and quality of reconstructed results at each compression rate. We are able to achieve compression ratios between 10 and 30 on moderate size datasets with minimal visual deterioration as a result of the lossy compression.Comment: 18 pages, 7 figure

    Multi-Kernel Diffusion CNNs for Graph-Based Learning on Point Clouds

    Full text link
    Graph convolutional networks are a new promising learning approach to deal with data on irregular domains. They are predestined to overcome certain limitations of conventional grid-based architectures and will enable efficient handling of point clouds or related graphical data representations, e.g. superpixel graphs. Learning feature extractors and classifiers on 3D point clouds is still an underdeveloped area and has potential restrictions to equal graph topologies. In this work, we derive a new architectural design that combines rotationally and topologically invariant graph diffusion operators and node-wise feature learning through 1x1 convolutions. By combining multiple isotropic diffusion operations based on the Laplace-Beltrami operator, we can learn an optimal linear combination of diffusion kernels for effective feature propagation across nodes on an irregular graph. We validated our approach for learning point descriptors as well as semantic classification on real 3D point clouds of human poses and demonstrate an improvement from 85% to 95% in Dice overlap with our multi-kernel approach.Comment: accepted for ECCV 2018 Workshop Geometry Meets Deep Learnin

    MeshCNN: A Network with an Edge

    Full text link
    Polygonal meshes provide an efficient representation for 3D shapes. They explicitly capture both shape surface and topology, and leverage non-uniformity to represent large flat regions as well as sharp, intricate features. This non-uniformity and irregularity, however, inhibits mesh analysis efforts using neural networks that combine convolution and pooling operations. In this paper, we utilize the unique properties of the mesh for a direct analysis of 3D shapes using MeshCNN, a convolutional neural network designed specifically for triangular meshes. Analogous to classic CNNs, MeshCNN combines specialized convolution and pooling layers that operate on the mesh edges, by leveraging their intrinsic geodesic connections. Convolutions are applied on edges and the four edges of their incident triangles, and pooling is applied via an edge collapse operation that retains surface topology, thereby, generating new mesh connectivity for the subsequent convolutions. MeshCNN learns which edges to collapse, thus forming a task-driven process where the network exposes and expands the important features while discarding the redundant ones. We demonstrate the effectiveness of our task-driven pooling on various learning tasks applied to 3D meshes.Comment: For a two-minute explanation video see https://bit.ly/meshcnnvide

    Efficient Feature-based Image Registration by Mapping Sparsified Surfaces

    Full text link
    With the advancement in the digital camera technology, the use of high resolution images and videos has been widespread in the modern society. In particular, image and video frame registration is frequently applied in computer graphics and film production. However, conventional registration approaches usually require long computational time for high resolution images and video frames. This hinders the application of the registration approaches in the modern industries. In this work, we first propose a new image representation method to accelerate the registration process by triangulating the images effectively. For each high resolution image or video frame, we compute an optimal coarse triangulation which captures the important features of the image. Then, we apply a surface registration algorithm to obtain a registration map which is used to compute the registration of the high resolution image. Experimental results suggest that our overall algorithm is efficient and capable to achieve a high compression rate while the accuracy of the registration is well retained when compared with the conventional grid-based approach. Also, the computational time of the registration is significantly reduced using our triangulation-based approach

    Fast Disk Conformal Parameterization of Simply-connected Open Surfaces

    Full text link
    Surface parameterizations have been widely used in computer graphics and geometry processing. In particular, as simply-connected open surfaces are conformally equivalent to the unit disk, it is desirable to compute the disk conformal parameterizations of the surfaces. In this paper, we propose a novel algorithm for the conformal parameterization of a simply-connected open surface onto the unit disk, which significantly speeds up the computation, enhances the conformality and stability, and guarantees the bijectivity. The conformality distortions at the inner region and on the boundary are corrected by two steps, with the aid of an iterative scheme using quasi-conformal theories. Experimental results demonstrate the effectiveness of our proposed method

    A Connectivity-Aware Multi-level Finite-Element System for Solving Laplace-Beltrami Equations

    Full text link
    Recent work on octree-based finite-element systems has developed a multigrid solver for Poisson equations on meshes. While the idea of defining a regularly indexed function space has been successfully used in a number of applications, it has also been noted that the richness of the function space is limited because the function values can be coupled across locally disconnected regions. In this work, we show how to enrich the function space by introducing functions that resolve the coupling while still preserving the nesting hierarchy that supports multigrid. A spectral analysis reveals the superior quality of the resulting Laplace-Beltrami operator and applications to surface flow demonstrate that our new solver more efficiently converges to the correct solution.Comment: This work was done when the first author was a PhD student at Johns Hopkins Universit

    hp-finite-elements for simulating electromagnetic fields in optical devices with rough textures

    Full text link
    The finite-element method is a preferred numerical method when electromagnetic fields at high accuracy are to be computed in nano-optics design. Here, we demonstrate a finite-element method using hp-adaptivity on tetrahedral meshes for computation of electromagnetic fields in a device with rough textures. The method allows for efficient computations on meshes with strong variations in element sizes. This enables to use precise geometry resolution of the rough textures. Convergence to highly accurate results is observed.Comment: Proceedings article, SPIE conference "Optical Systems Design 2015: Computational Optics

    Solid Geometry Processing on Deconstructed Domains

    Full text link
    Many tasks in geometry processing are modeled as variational problems solved numerically using the finite element method. For solid shapes, this requires a volumetric discretization, such as a boundary conforming tetrahedral mesh. Unfortunately, tetrahedral meshing remains an open challenge and existing methods either struggle to conform to complex boundary surfaces or require manual intervention to prevent failure. Rather than create a single volumetric mesh for the entire shape, we advocate for solid geometry processing on deconstructed domains, where a large and complex shape is composed of overlapping solid subdomains. As each smaller and simpler part is now easier to tetrahedralize, the question becomes how to account for overlaps during problem modeling and how to couple solutions on each subdomain together algebraically. We explore how and why previous coupling methods fail, and propose a method that couples solid domains only along their boundary surfaces. We demonstrate the superiority of this method through empirical convergence tests and qualitative applications to solid geometry processing on a variety of popular second-order and fourth-order partial differential equations.Comment: submitted to Computer Graphics Foru
    corecore