3 research outputs found

    Fast Neural Representations for Direct Volume Rendering

    Full text link
    Despite the potential of neural scene representations to effectively compress 3D scalar fields at high reconstruction quality, the computational complexity of the training and data reconstruction step using scene representation networks limits their use in practical applications. In this paper, we analyze whether scene representation networks can be modified to reduce these limitations and whether such architectures can also be used for temporal reconstruction tasks. We propose a novel design of scene representation networks using GPU tensor cores to integrate the reconstruction seamlessly into on-chip raytracing kernels, and compare the quality and performance of this network to alternative network- and non-network-based compression schemes. The results indicate competitive quality of our design at high compression rates, and significantly faster decoding times and lower memory consumption during data reconstruction. We investigate how density gradients can be computed using the network and show an extension where density, gradient and curvature are predicted jointly. As an alternative to spatial super-resolution approaches for time-varying fields, we propose a solution that builds upon latent-space interpolation to enable random access reconstruction at arbitrary granularity. We summarize our findings in the form of an assessment of the strengths and limitations of scene representation networks \changed{for compression domain volume rendering, and outline future research directions

    Deep Hierarchical Super-Resolution for Scientific Data Reduction and Visualization

    Full text link
    We present an approach for hierarchical super resolution (SR) using neural networks on an octree data representation. We train a hierarchy of neural networks, each capable of 2x upscaling in each spatial dimension between two levels of detail, and use these networks in tandem to facilitate large scale factor super resolution, scaling with the number of trained networks. We utilize these networks in a hierarchical super resolution algorithm that upscales multiresolution data to a uniform high resolution without introducing seam artifacts on octree node boundaries. We evaluate application of this algorithm in a data reduction framework by dynamically downscaling input data to an octree-based data structure to represent the multiresolution data before compressing for additional storage reduction. We demonstrate that our approach avoids seam artifacts common to multiresolution data formats, and show how neural network super resolution assisted data reduction can preserve global features better than compressors alone at the same compression ratios
    corecore