2,456 research outputs found

    Impact Assessment of Hypothesized Cyberattacks on Interconnected Bulk Power Systems

    Full text link
    The first-ever Ukraine cyberattack on power grid has proven its devastation by hacking into their critical cyber assets. With administrative privileges accessing substation networks/local control centers, one intelligent way of coordinated cyberattacks is to execute a series of disruptive switching executions on multiple substations using compromised supervisory control and data acquisition (SCADA) systems. These actions can cause significant impacts to an interconnected power grid. Unlike the previous power blackouts, such high-impact initiating events can aggravate operating conditions, initiating instability that may lead to system-wide cascading failure. A systemic evaluation of "nightmare" scenarios is highly desirable for asset owners to manage and prioritize the maintenance and investment in protecting their cyberinfrastructure. This survey paper is a conceptual expansion of real-time monitoring, anomaly detection, impact analyses, and mitigation (RAIM) framework that emphasizes on the resulting impacts, both on steady-state and dynamic aspects of power system stability. Hypothetically, we associate the combinatorial analyses of steady state on substations/components outages and dynamics of the sequential switching orders as part of the permutation. The expanded framework includes (1) critical/noncritical combination verification, (2) cascade confirmation, and (3) combination re-evaluation. This paper ends with a discussion of the open issues for metrics and future design pertaining the impact quantification of cyber-related contingencies

    A Novel Power-Band based Data Segmentation Method for Enhancing Meter Phase and Transformer-Meter Pairing Identification

    Full text link
    This paper presents a novel power-band-based data segmentation (PBDS) method to enhance the identification of meter phase and meter-transformer pairing. Meters that share the same transformer or are on the same phase typically exhibit strongly correlated voltage profiles. However, under high power consumption, there can be significant voltage drops along the line connecting a customer to the distribution transformer. These voltage drops significantly decrease the correlations among meters on the same phase or supplied by the same transformer, resulting in high misidentification rates. To address this issue, we propose using power bands to select highly correlated voltage segments for computing correlations, rather than relying solely on correlations computed from the entire voltage waveforms. The algorithm's performance is assessed by conducting tests using data gathered from 13 utility feeders. To ensure the credibility of the identification results, utility engineers conduct field verification for all 13 feeders. The verification results unequivocally demonstrate that the proposed algorithm surpasses existing methods in both accuracy and robustness.Comment: Submitted to the IEEE Transactions on Power Delivery. arXiv admin note: text overlap with arXiv:2111.1050
    • …
    corecore