29 research outputs found

    ConvS2S-VC: Fully convolutional sequence-to-sequence voice conversion

    Full text link
    This paper proposes a voice conversion (VC) method using sequence-to-sequence (seq2seq or S2S) learning, which flexibly converts not only the voice characteristics but also the pitch contour and duration of input speech. The proposed method, called ConvS2S-VC, has three key features. First, it uses a model with a fully convolutional architecture. This is particularly advantageous in that it is suitable for parallel computations using GPUs. It is also beneficial since it enables effective normalization techniques such as batch normalization to be used for all the hidden layers in the networks. Second, it achieves many-to-many conversion by simultaneously learning mappings among multiple speakers using only a single model instead of separately learning mappings between each speaker pair using a different model. This enables the model to fully utilize available training data collected from multiple speakers by capturing common latent features that can be shared across different speakers. Owing to this structure, our model works reasonably well even without source speaker information, thus making it able to handle any-to-many conversion tasks. Third, we introduce a mechanism, called the conditional batch normalization that switches batch normalization layers in accordance with the target speaker. This particular mechanism has been found to be extremely effective for our many-to-many conversion model. We conducted speaker identity conversion experiments and found that ConvS2S-VC obtained higher sound quality and speaker similarity than baseline methods. We also found from audio examples that it could perform well in various tasks including emotional expression conversion, electrolaryngeal speech enhancement, and English accent conversion.Comment: Published in IEEE/ACM Trans. ASLP https://ieeexplore.ieee.org/document/911344

    Converting Anyone's Emotion: Towards Speaker-Independent Emotional Voice Conversion

    Full text link
    Emotional voice conversion aims to convert the emotion of speech from one state to another while preserving the linguistic content and speaker identity. The prior studies on emotional voice conversion are mostly carried out under the assumption that emotion is speaker-dependent. We consider that there is a common code between speakers for emotional expression in a spoken language, therefore, a speaker-independent mapping between emotional states is possible. In this paper, we propose a speaker-independent emotional voice conversion framework, that can convert anyone's emotion without the need for parallel data. We propose a VAW-GAN based encoder-decoder structure to learn the spectrum and prosody mapping. We perform prosody conversion by using continuous wavelet transform (CWT) to model the temporal dependencies. We also investigate the use of F0 as an additional input to the decoder to improve emotion conversion performance. Experiments show that the proposed speaker-independent framework achieves competitive results for both seen and unseen speakers.Comment: Accepted by Interspeech 202

    CycleGAN-VC2: Improved CycleGAN-based Non-parallel Voice Conversion

    Full text link
    Non-parallel voice conversion (VC) is a technique for learning the mapping from source to target speech without relying on parallel data. This is an important task, but it has been challenging due to the disadvantages of the training conditions. Recently, CycleGAN-VC has provided a breakthrough and performed comparably to a parallel VC method without relying on any extra data, modules, or time alignment procedures. However, there is still a large gap between the real target and converted speech, and bridging this gap remains a challenge. To reduce this gap, we propose CycleGAN-VC2, which is an improved version of CycleGAN-VC incorporating three new techniques: an improved objective (two-step adversarial losses), improved generator (2-1-2D CNN), and improved discriminator (PatchGAN). We evaluated our method on a non-parallel VC task and analyzed the effect of each technique in detail. An objective evaluation showed that these techniques help bring the converted feature sequence closer to the target in terms of both global and local structures, which we assess by using Mel-cepstral distortion and modulation spectra distance, respectively. A subjective evaluation showed that CycleGAN-VC2 outperforms CycleGAN-VC in terms of naturalness and similarity for every speaker pair, including intra-gender and inter-gender pairs.Comment: Accepted to ICASSP 2019. Project page: http://www.kecl.ntt.co.jp/people/kaneko.takuhiro/projects/cyclegan-vc2/index.htm

    Parallel-Data-Free Voice Conversion Using Cycle-Consistent Adversarial Networks

    Full text link
    We propose a parallel-data-free voice-conversion (VC) method that can learn a mapping from source to target speech without relying on parallel data. The proposed method is general purpose, high quality, and parallel-data free and works without any extra data, modules, or alignment procedure. It also avoids over-smoothing, which occurs in many conventional statistical model-based VC methods. Our method, called CycleGAN-VC, uses a cycle-consistent adversarial network (CycleGAN) with gated convolutional neural networks (CNNs) and an identity-mapping loss. A CycleGAN learns forward and inverse mappings simultaneously using adversarial and cycle-consistency losses. This makes it possible to find an optimal pseudo pair from unpaired data. Furthermore, the adversarial loss contributes to reducing over-smoothing of the converted feature sequence. We configure a CycleGAN with gated CNNs and train it with an identity-mapping loss. This allows the mapping function to capture sequential and hierarchical structures while preserving linguistic information. We evaluated our method on a parallel-data-free VC task. An objective evaluation showed that the converted feature sequence was near natural in terms of global variance and modulation spectra. A subjective evaluation showed that the quality of the converted speech was comparable to that obtained with a Gaussian mixture model-based method under advantageous conditions with parallel and twice the amount of data

    StarGAN-VC: Non-parallel many-to-many voice conversion with star generative adversarial networks

    Full text link
    This paper proposes a method that allows non-parallel many-to-many voice conversion (VC) by using a variant of a generative adversarial network (GAN) called StarGAN. Our method, which we call StarGAN-VC, is noteworthy in that it (1) requires no parallel utterances, transcriptions, or time alignment procedures for speech generator training, (2) simultaneously learns many-to-many mappings across different attribute domains using a single generator network, (3) is able to generate converted speech signals quickly enough to allow real-time implementations and (4) requires only several minutes of training examples to generate reasonably realistic-sounding speech. Subjective evaluation experiments on a non-parallel many-to-many speaker identity conversion task revealed that the proposed method obtained higher sound quality and speaker similarity than a state-of-the-art method based on variational autoencoding GANs

    AttS2S-VC: Sequence-to-Sequence Voice Conversion with Attention and Context Preservation Mechanisms

    Full text link
    This paper describes a method based on a sequence-to-sequence learning (Seq2Seq) with attention and context preservation mechanism for voice conversion (VC) tasks. Seq2Seq has been outstanding at numerous tasks involving sequence modeling such as speech synthesis and recognition, machine translation, and image captioning. In contrast to current VC techniques, our method 1) stabilizes and accelerates the training procedure by considering guided attention and proposed context preservation losses, 2) allows not only spectral envelopes but also fundamental frequency contours and durations of speech to be converted, 3) requires no context information such as phoneme labels, and 4) requires no time-aligned source and target speech data in advance. In our experiment, the proposed VC framework can be trained in only one day, using only one GPU of an NVIDIA Tesla K80, while the quality of the synthesized speech is higher than that of speech converted by Gaussian mixture model-based VC and is comparable to that of speech generated by recurrent neural network-based text-to-speech synthesis, which can be regarded as an upper limit on VC performance.Comment: Submitted to ICASSP201

    A Multi-Discriminator CycleGAN for Unsupervised Non-Parallel Speech Domain Adaptation

    Full text link
    Domain adaptation plays an important role for speech recognition models, in particular, for domains that have low resources. We propose a novel generative model based on cyclic-consistent generative adversarial network (CycleGAN) for unsupervised non-parallel speech domain adaptation. The proposed model employs multiple independent discriminators on the power spectrogram, each in charge of different frequency bands. As a result we have 1) better discriminators that focus on fine-grained details of the frequency features, and 2) a generator that is capable of generating more realistic domain-adapted spectrogram. We demonstrate the effectiveness of our method on speech recognition with gender adaptation, where the model only has access to supervised data from one gender during training, but is evaluated on the other at test time. Our model is able to achieve an average of 7.41%7.41\% on phoneme error rate, and 11.10%11.10\% word error rate relative performance improvement as compared to the baseline, on TIMIT and WSJ dataset, respectively. Qualitatively, our model also generates more natural sounding speech, when conditioned on data from the other domain.Comment: Accepted to Interspeech 201

    High quality voice conversion using prosodic and high-resolution spectral features

    Full text link
    Voice conversion methods have advanced rapidly over the last decade. Studies have shown that speaker characteristics are captured by spectral feature as well as various prosodic features. Most existing conversion methods focus on the spectral feature as it directly represents the timbre characteristics, while some conversion methods have focused only on the prosodic feature represented by the fundamental frequency. In this paper, a comprehensive framework using deep neural networks to convert both timbre and prosodic features is proposed. The timbre feature is represented by a high-resolution spectral feature. The prosodic features include F0, intensity and duration. It is well known that DNN is useful as a tool to model high-dimensional features. In this work, we show that DNN initialized by our proposed autoencoder pretraining yields good quality DNN conversion models. This pretraining is tailor-made for voice conversion and leverages on autoencoder to capture the generic spectral shape of source speech. Additionally, our framework uses segmental DNN models to capture the evolution of the prosodic features over time. To reconstruct the converted speech, the spectral feature produced by the DNN model is combined with the three prosodic features produced by the DNN segmental models. Our experimental results show that the application of both prosodic and high-resolution spectral features leads to quality converted speech as measured by objective evaluation and subjective listening tests

    VQVC+: One-Shot Voice Conversion by Vector Quantization and U-Net architecture

    Full text link
    Voice conversion (VC) is a task that transforms the source speaker's timbre, accent, and tones in audio into another one's while preserving the linguistic content. It is still a challenging work, especially in a one-shot setting. Auto-encoder-based VC methods disentangle the speaker and the content in input speech without given the speaker's identity, so these methods can further generalize to unseen speakers. The disentangle capability is achieved by vector quantization (VQ), adversarial training, or instance normalization (IN). However, the imperfect disentanglement may harm the quality of output speech. In this work, to further improve audio quality, we use the U-Net architecture within an auto-encoder-based VC system. We find that to leverage the U-Net architecture, a strong information bottleneck is necessary. The VQ-based method, which quantizes the latent vectors, can serve the purpose. The objective and the subjective evaluations show that the proposed method performs well in both audio naturalness and speaker similarity

    Many-to-Many Voice Conversion using Conditional Cycle-Consistent Adversarial Networks

    Full text link
    Voice conversion (VC) refers to transforming the speaker characteristics of an utterance without altering its linguistic contents. Many works on voice conversion require to have parallel training data that is highly expensive to acquire. Recently, the cycle-consistent adversarial network (CycleGAN), which does not require parallel training data, has been applied to voice conversion, showing the state-of-the-art performance. The CycleGAN based voice conversion, however, can be used only for a pair of speakers, i.e., one-to-one voice conversion between two speakers. In this paper, we extend the CycleGAN by conditioning the network on speakers. As a result, the proposed method can perform many-to-many voice conversion among multiple speakers using a single generative adversarial network (GAN). Compared to building multiple CycleGANs for each pair of speakers, the proposed method reduces the computational and spatial cost significantly without compromising the sound quality of the converted voice. Experimental results using the VCC2018 corpus confirm the efficiency of the proposed method
    corecore