2,685 research outputs found

    Capacity Improvement and Analysis of VoIP Service in a Cognitive Radio System

    Get PDF
    Abstract-We herein analyze the capacity of voice over IP (VoIP) and propose a new method for finding the minimum detection and false-alarm probabilities to ensure the quality-of-service (QoS) requirement of VoIP users in a cognitive radio system. We propose a model for the system supporting the VoIP service as a 2-D discrete-time Markov chain (DTMC). The VoIP traffic and wireless channels in the cognitive radio system are described as a Markov-modulated Poisson process (MMPP) model and a Markov channel model, respectively. In addition, we introduce a simple spectrum-sensing model based on energy detection. By means of the DTMC approach, we demonstrate various analytical and simulation results under the constraint of imperfect spectrum sensing, such as the packet dropping probability, average throughput, and VoIP capacity

    Throughput analysis for cognitive radio networks with multiple primary users and imperfect spectrum sensing

    Get PDF
    In cognitive radio networks, the licensed frequency bands of the primary users (PUs) are available to the secondary user (SU) provided that they do not cause significant interference to the PUs. In this study, the authors analysed the normalised throughput of the SU with multiple PUs coexisting under any frequency division multiple access communication protocol. The authors consider a cognitive radio transmission where the frame structure consists of sensing and data transmission slots. In order to achieve the maximum normalised throughput of the SU and control the interference level to the legal PUs, the optimal frame length of the SU is found via simulation. In this context, a new analytical formula has been expressed for the achievable normalised throughput of SU with multiple PUs under prefect and imperfect spectrum sensing scenarios. Moreover, the impact of imperfect sensing, variable frame length of SU and the variable PU traffic loads, on the normalised throughput has been critically investigated. It has been shown that the analytical and simulation results are in perfect agreement. The authors analytical results are much useful to determine how to select the frame duration length subject to the parameters of cognitive radio network, such as network traffic load, achievable sensing accuracy and number of coexisting PUs

    Spectral and Energy Efficiency in Cognitive Radio Systems with Unslotted Primary Users and Sensing Uncertainty

    Full text link
    This paper studies energy efficiency (EE) and average throughput maximization for cognitive radio systems in the presence of unslotted primary users. It is assumed that primary user activity follows an ON-OFF alternating renewal process. Secondary users first sense the channel possibly with errors in the form of miss detections and false alarms, and then start the data transmission only if no primary user activity is detected. The secondary user transmission is subject to constraints on collision duration ratio, which is defined as the ratio of average collision duration to transmission duration. In this setting, the optimal power control policy which maximizes the EE of the secondary users or maximizes the average throughput while satisfying a minimum required EE under average/peak transmit power and average interference power constraints are derived. Subsequently, low-complexity algorithms for jointly determining the optimal power level and frame duration are proposed. The impact of probabilities of detection and false alarm, transmit and interference power constraints on the EE, average throughput of the secondary users, optimal transmission power, and the collisions with primary user transmissions are evaluated. In addition, some important properties of the collision duration ratio are investigated. The tradeoff between the EE and average throughput under imperfect sensing decisions and different primary user traffic are further analyzed.Comment: This paper is accepted for publication in IEEE Transactions on Communication

    Performance of LTE network for VoIP users

    Get PDF
    With the arrival of LTE standard, it is expected that the mobile voice services paradigm will shift from the circuit switched to fully packet switched mode supporting the VoIP services. VoIP services took quite a bit of time before they were accepted as the main stream telephony service in the fixed networks. To provide VoIP services over the LTE networks with appropriate QoS, it is necessary to analyse the performance of such services and optimise the network parameters. This paper analyses the performance of VoIP services on the LTE network using the FD and the SMP packet scheduling techniques. This work identifies and analyses the features of above LTE packet scheduling techniques to enhance the QoS of VoIP services. An OPNET-based simulation model is used to analyse the performance of VoIP services on the LTE network by incorporating G.711 and G.723 speech coders. The work also studied the performance of VoIP services in variable transmission channel conditions
    • …
    corecore