8 research outputs found

    Visually grounded learning of keyword prediction from untranscribed speech

    Full text link
    During language acquisition, infants have the benefit of visual cues to ground spoken language. Robots similarly have access to audio and visual sensors. Recent work has shown that images and spoken captions can be mapped into a meaningful common space, allowing images to be retrieved using speech and vice versa. In this setting of images paired with untranscribed spoken captions, we consider whether computer vision systems can be used to obtain textual labels for the speech. Concretely, we use an image-to-words multi-label visual classifier to tag images with soft textual labels, and then train a neural network to map from the speech to these soft targets. We show that the resulting speech system is able to predict which words occur in an utterance---acting as a spoken bag-of-words classifier---without seeing any parallel speech and text. We find that the model often confuses semantically related words, e.g. "man" and "person", making it even more effective as a semantic keyword spotter.Comment: 5 pages, 3 figures, 5 tables; small updates, added link to code; accepted to Interspeech 201

    Unsupervised Learning of Semantic Audio Representations

    Full text link
    Even in the absence of any explicit semantic annotation, vast collections of audio recordings provide valuable information for learning the categorical structure of sounds. We consider several class-agnostic semantic constraints that apply to unlabeled nonspeech audio: (i) noise and translations in time do not change the underlying sound category, (ii) a mixture of two sound events inherits the categories of the constituents, and (iii) the categories of events in close temporal proximity are likely to be the same or related. Without labels to ground them, these constraints are incompatible with classification loss functions. However, they may still be leveraged to identify geometric inequalities needed for triplet loss-based training of convolutional neural networks. The result is low-dimensional embeddings of the input spectrograms that recover 41% and 84% of the performance of their fully-supervised counterparts when applied to downstream query-by-example sound retrieval and sound event classification tasks, respectively. Moreover, in limited-supervision settings, our unsupervised embeddings double the state-of-the-art classification performance.Comment: Submitted to ICASSP 201

    Voice-assisted Image Labelling for Endoscopic Ultrasound Classification using Neural Networks

    Get PDF
    Ultrasound imaging is a commonly used technology for visualising patient anatomy in real-time during diagnostic and therapeutic procedures. High operator dependency and low reproducibility make ultrasound imaging and interpretation challenging with a steep learning curve. Automatic image classification using deep learning has the potential to overcome some of these challenges by supporting ultrasound training in novices, as well as aiding ultrasound image interpretation in patient with complex pathology for more experienced practitioners. However, the use of deep learning methods requires a large amount of data in order to provide accurate results. Labelling large ultrasound datasets is a challenging task because labels are retrospectively assigned to 2D images without the 3D spatial context available in vivo or that would be inferred while visually tracking structures between frames during the procedure. In this work, we propose a multi-modal convolutional neural network (CNN) architecture that labels endoscopic ultrasound (EUS) images from raw verbal comments provided by a clinician during the procedure. We use a CNN composed of two branches, one for voice data and another for image data, which are joined to predict image labels from the spoken names of anatomical landmarks. The network was trained using recorded verbal comments from expert operators. Our results show a prediction accuracy of 76% at image level on a dataset with 5 different labels. We conclude that the addition of spoken commentaries can increase the performance of ultrasound image classification, and eliminate the burden of manually labelling large EUS datasets necessary for deep learning applications
    corecore