2 research outputs found

    Visual exploration of semantic-web-based knowledge structures

    Get PDF
    Humans have a curious nature and seek a better understanding of the world. Data, in- formation, and knowledge became assets of our modern society through the information technology revolution in the form of the internet. However, with the growing size of accumulated data, new challenges emerge, such as searching and navigating in these large collections of data, information, and knowledge. The current developments in academic and industrial contexts target the corresponding challenges using Semantic Web techno- logies. The Semantic Web is an extension of the Web and provides machine-readable representations of knowledge for various domains. These machine-readable representations allow intelligent machine agents to understand the meaning of the data and information; and enable additional inference of new knowledge. Generally, the Semantic Web is designed for information exchange and its processing and does not focus on presenting such semantically enriched data to humans. Visualizations support exploration, navigation, and understanding of data by exploiting humans’ ability to comprehend complex data through visual representations. In the context of Semantic- Web-Based knowledge structures, various visualization methods and tools are available, and new ones are being developed every year. However, suitable visualizations are highly dependent on individual use cases and targeted user groups. In this thesis, we investigate visual exploration techniques for Semantic-Web-Based knowledge structures by addressing the following challenges: i) how to engage various user groups in modeling such semantic representations; ii) how to facilitate understanding using customizable visual representations; and iii) how to ease the creation of visualizations for various data sources and different use cases. The achieved results indicate that visual modeling techniques facilitate the engagement of various user groups in ontology modeling. Customizable visualizations enable users to adjust visualizations to the current needs and provide different views on the data. Additionally, customizable visualization pipelines enable rapid visualization generation for various use cases, data sources, and user group

    Development of Semantics-Based Distributed Middleware for Heterogeneous Data Integration and its Application for Drought

    Get PDF
    ThesisDrought is a complex environmental phenomenon that affects millions of people and communities all over the globe and is too elusive to be accurately predicted. This is mostly due to the scalability and variability of the web of environmental parameters that directly/indirectly causes the onset of different categories of drought. Since the dawn of man, efforts have been made to uniquely understand the natural indicators that provide signs of likely environmental events. These indicators/signs in the form of indigenous knowledge system have been used for generations. Also, since the dawn of modern science, different drought prediction and forecasting models/indices have been developed which usually incorporate data from sparsely located weather stations in their computation, producing less accurate results – due to lack of the desired scalability in the input datasets. The intricate complexity of drought has, however, always been a major stumbling block for accurate drought prediction and forecasting systems. Recently, scientists in the field of ethnoecology, agriculture and environmental monitoring have been discussing the integration of indigenous knowledge and scientific knowledge for a more accurate environmental forecasting system in order to incorporate diverse environmental information for a reliable drought forecast. Hence, in this research, the core objective is the development of a semantics-based data integration middleware that encompasses and integrates heterogeneous data models of local indigenous knowledge and sensor data towards an accurate drought forecasting system for the study areas of the KwaZulu-Natal province of South Africa and Mbeere District of Kenya. For the study areas, the local indigenous knowledge on drought gathered from the domain experts and local elderly farmers, is transformed into rules to be used for performing deductive inference in conjunction with sensors data for determining the onset of drought through an automated inference generation module of the middleware. The semantic middleware incorporates, inter alia, a distributed architecture that consists of a streaming data processing engine based on Apache Kafka for real-time stream processing; a rule-based reasoning module; an ontology module for semantic representation of the knowledge bases. The plethora of sub-systems in the semantic middleware produce a service(s) as a combined output – in the form of drought forecast advisory information (DFAI). The DFAI as an output of the semantic middleware is disseminated across multiple channels for utilisation by policy-makers to develop mitigation strategies to combat the effect of drought and their drought-related decision-making processes
    corecore