5,930 research outputs found

    Pivotal Visualization:A Design Method to Enrich Visual Exploration

    Get PDF

    Modeling Faceted Browsing with Category Theory for Reuse and Interoperability

    Get PDF
    Faceted browsing (also called faceted search or faceted navigation) is an exploratory search model where facets assist in the interactive navigation of search results. Facets are attributes that have been assigned to describe resources being explored; a faceted taxonomy is a collection of facets provided by the interface and is often organized as sets, hierarchies, or graphs. Faceted browsing has become ubiquitous with modern digital libraries and online search engines, yet the process is still difficult to abstractly model in a manner that supports the development of interoperable and reusable interfaces. We propose category theory as a theoretical foundation for faceted browsing and demonstrate how the interactive process can be mathematically abstracted in order to support the development of reusable and interoperable faceted systems. Existing efforts in facet modeling are based upon set theory, formal concept analysis, and light-weight ontologies, but in many regards they are implementations of faceted browsing rather than a specification of the basic, underlying structures and interactions. We will demonstrate that category theory allows us to specify faceted objects and study the relationships and interactions within a faceted browsing system. Resulting implementations can then be constructed through a category-theoretic lens using these models, allowing abstract comparison and communication that naturally support interoperability and reuse. In this context, reuse and interoperability are at two levels: between discrete systems and within a single system. Our model works at both levels by leveraging category theory as a common language for representation and computation. We will establish facets and faceted taxonomies as categories and will demonstrate how the computational elements of category theory, including products, merges, pushouts, and pullbacks, extend the usefulness of our model. More specifically, we demonstrate that categorical constructions such as the pullback and pushout operations can help organize and reorganize facets; these operations in particular can produce faceted views containing relationships not found in the original source taxonomy. We show how our category-theoretic model of facets relates to database schemas and discuss how this relationship assists in implementing the abstractions presented. We give examples of interactive interfaces from the biomedical domain to help illustrate how our abstractions relate to real-world requirements while enabling systematic reuse and interoperability. We introduce DELVE (Document ExpLoration and Visualization Engine), our framework for developing interactive visualizations as modular Web-applications in order to assist researchers with exploratory literature search. We show how facets relate to and control visualizations; we give three examples of text visualizations that either contain or interact with facets. We show how each of these visualizations can be represented with our model and demonstrate how our model directly informs implementation. With our general framework for communicating consistently about facets at a high level of abstraction, we enable the construction of interoperable interfaces and enable the intelligent reuse of both existing and future efforts

    TrauMAP - Integrating Anatomical and Physiological Simulation (Dissertation Proposal)

    Get PDF
    In trauma, many injuries impact anatomical structures, which may in turn affect physiological processes - not only those processes within the structure, but also ones occurring in physical proximity to them. Our goal with this research is to model mechanical interactions of different body systems and their impingement on underlying physiological processes. We are particularly concerned with pathological situations in which body system functions that normally do not interact become dependent as a result of mechanical behavior. Towards that end, the proposed TRAUMAP system (Trauma Modeling of Anatomy and Physiology) consists of three modules: (1) a hypothesis generator for suggesting possible structural changes that result from the direct injuries sustained; (2) an information source for responding to operator querying about anatomical structures, physiological processes, and pathophysiological processes; and (3) a continuous system simulator for simulating and illustrating anatomical and physiological changes in three dimensions. Models that can capture such changes may serve as an infrastructure for more detailed modeling and benefit surgical planning, surgical training, and general medical education, enabling students to visualize better, in an interactive environment, certain basic anatomical and physiological dependencies

    Visual Exploration And Information Analytics Of High-Dimensional Medical Images

    Get PDF
    Data visualization has transformed how we analyze increasingly large and complex data sets. Advanced visual tools logically represent data in a way that communicates the most important information inherent within it and culminate the analysis with an insightful conclusion. Automated analysis disciplines - such as data mining, machine learning, and statistics - have traditionally been the most dominant fields for data analysis. It has been complemented with a near-ubiquitous adoption of specialized hardware and software environments that handle the storage, retrieval, and pre- and postprocessing of digital data. The addition of interactive visualization tools allows an active human participant in the model creation process. The advantage is a data-driven approach where the constraints and assumptions of the model can be explored and chosen based on human insight and confirmed on demand by the analytic system. This translates to a better understanding of data and a more effective knowledge discovery. This trend has become very popular across various domains, not limited to machine learning, simulation, computer vision, genetics, stock market, data mining, and geography. In this dissertation, we highlight the role of visualization within the context of medical image analysis in the field of neuroimaging. The analysis of brain images has uncovered amazing traits about its underlying dynamics. Multiple image modalities capture qualitatively different internal brain mechanisms and abstract it within the information space of that modality. Computational studies based on these modalities help correlate the high-level brain function measurements with abnormal human behavior. These functional maps are easily projected in the physical space through accurate 3-D brain reconstructions and visualized in excellent detail from different anatomical vantage points. Statistical models built for comparative analysis across subject groups test for significant variance within the features and localize abnormal behaviors contextualizing the high-level brain activity. Currently, the task of identifying the features is based on empirical evidence, and preparing data for testing is time-consuming. Correlations among features are usually ignored due to lack of insight. With a multitude of features available and with new emerging modalities appearing, the process of identifying the salient features and their interdependencies becomes more difficult to perceive. This limits the analysis only to certain discernible features, thus limiting human judgments regarding the most important process that governs the symptom and hinders prediction. These shortcomings can be addressed using an analytical system that leverages data-driven techniques for guiding the user toward discovering relevant hypotheses. The research contributions within this dissertation encompass multidisciplinary fields of study not limited to geometry processing, computer vision, and 3-D visualization. However, the principal achievement of this research is the design and development of an interactive system for multimodality integration of medical images. The research proceeds in various stages, which are important to reach the desired goal. The different stages are briefly described as follows: First, we develop a rigorous geometry computation framework for brain surface matching. The brain is a highly convoluted structure of closed topology. Surface parameterization explicitly captures the non-Euclidean geometry of the cortical surface and helps derive a more accurate registration of brain surfaces. We describe a technique based on conformal parameterization that creates a bijective mapping to the canonical domain, where surface operations can be performed with improved efficiency and feasibility. Subdividing the brain into a finite set of anatomical elements provides the structural basis for a categorical division of anatomical view points and a spatial context for statistical analysis. We present statistically significant results of our analysis into functional and morphological features for a variety of brain disorders. Second, we design and develop an intelligent and interactive system for visual analysis of brain disorders by utilizing the complete feature space across all modalities. Each subdivided anatomical unit is specialized by a vector of features that overlap within that element. The analytical framework provides the necessary interactivity for exploration of salient features and discovering relevant hypotheses. It provides visualization tools for confirming model results and an easy-to-use interface for manipulating parameters for feature selection and filtering. It provides coordinated display views for visualizing multiple features across multiple subject groups, visual representations for highlighting interdependencies and correlations between features, and an efficient data-management solution for maintaining provenance and issuing formal data queries to the back end

    Designing for Nurse-AI Collaboration in Triage

    Get PDF
    The Local Emergency Medical Communication Centers (LEMCs) play a crucial role in the Norwegian healthcare system by receiving calls for immediate medical assistance. Registered nurses operate the phone calls, and their task is to assess the situation and triage the caller into appropriate triage levels indicating when and how help should be provided. Telephone triage poses challenges due to the limitations of audio communication, time sensitivity, and complex decision-making. Additionally, nurses often face the burden of managing clinical tools across multiple interfaces. This thesis explored how to design a system to support nurses in telephone triage and how we can facilitate nurse-AI collaboration in the process. A Research through Design (RtD) methodology was employed, and an iterative design approach was utilized. The research investigated the design aspects of AI-based suggestions and the use of natural language when creating semi-structured documentation. Four prototype iterations were developed throughout the study, and researchers from RE-AIMED and telephone operators conducted evaluations of the prototypes. Designing a tool for telephone triage requires understanding the user's needs and workflow. It is, therefore, crucial to involve telephone operators in the design process. The prototype demonstrated how we could design for incorporating AI in the triage process, and this thesis explores the various considerations when designing for nurse-AI collaboration. One notable finding was the importance of enabling documentation in natural language, as relying solely on structured documentation may fail to capture the caller's specific situation. Additionally, it is important to design a system that facilitates documentation of patient-initiated information and questions initiated by the nurses or the system.Masteroppgave i informasjonsvitenskapINFO390MASV-INF

    SOFTVIZ... A Step Forward

    Get PDF
    Complex software systems are difficult to understand and very hard to debug. Programmers trying to understand or debug these systems must read through source code which may span over thousands of files. Software Visualization tries to ease this burden by using graphics and animation to convey important information about the program to the user, which may be used either for understanding the behavior of the program or for detecting any defects within the code. SoftViz is one such software visualization system, developed by Ben Kurtz under the guidance of Prof. George T. Heineman at WPI. We carry forward the work initiated with SoftViz. Our preliminary study showed various avenues for making the system more effective and user-friendly. Specifically I completed the unfinished work, made optimizations, implemented new functionality and added new visualization plug-ins, all aimed at making the system a more versatile and user-friendly debugging framework. We built a solid core functionality that would be able to support various functionalities and created new plug-ins that would make understanding and bug-detection easier. Further we integrated SoftViz with the Eclipse development environment, making the system easily accessible and potentially widely used. We created an error classification framework relating the common error classes and the visualizations that could be used to detect them. We believe this will be helpful in both selecting the right visualization options as well as constructing new plug-ins

    Interactive Visualization of Multimodal Brain Connectivity: Applications in Clinical and Cognitive Neuroscience

    Get PDF
    Magnetic resonance imaging (MRI) has become a readily available prognostic and diagnostic method, providing invaluable information for the clinical treatment of neurological diseases. Multimodal neuroimaging allows integration of complementary data from various aspects such as functional and anatomical properties; thus, it has the potential to overcome the limitations of each individual modality. Specifically, functional and diffusion MRI are two non-invasive neuroimaging techniques customized to capture brain activity and microstructural properties, respectively. Data from these two modalities is inherently complex, and interactive visualization can assist with data comprehension. The current thesis presents the design, development, and validation of visualization and computation approaches that address the need for integration of brain connectivity from functional and structural domains. Two contexts were considered to develop these approaches: neuroscience exploration and minimally invasive neurosurgical planning. The goal was to provide novel visualization algorithms and gain new insights into big and complex data (e.g., brain networks) by visual analytics. This goal was achieved through three steps: 3D Graphical Collision Detection: One of the primary challenges was the timely rendering of grey matter (GM) regions and white matter (WM) fibers based on their 3D spatial maps. This challenge necessitated pre-scanning those objects to generate a memory array containing their intersections with memory units. This process helped faster retrieval of GM and WM virtual models during the user interactions. Neuroscience Enquiry (MultiXplore): A software interface was developed to display and react to user inputs by means of a connectivity matrix. This matrix displays connectivity information and is capable to accept selections from users and display the relevant ones in 3D anatomical view (with associated anatomical elements). In addition, this package can load multiple matrices from dynamic connectivity methods and annotate brain fibers. Neurosurgical Planning (NeuroPathPlan): A computational method was provided to map the network measures to GM and WM; thus, subject-specific eloquence metric can be derived from related resting state networks and used in objective assessment of cortical and subcortical tissue. This metric was later compared to apriori knowledge based decisions from neurosurgeons. Preliminary results show that eloquence metric has significant similarities with expert decisions

    An overview of decision table literature 1982-1995.

    Get PDF
    This report gives an overview of the literature on decision tables over the past 15 years. As much as possible, for each reference, an author supplied abstract, a number of keywords and a classification are provided. In some cases own comments are added. The purpose of these comments is to show where, how and why decision tables are used. The literature is classified according to application area, theoretical versus practical character, year of publication, country or origin (not necessarily country of publication) and the language of the document. After a description of the scope of the interview, classification results and the classification by topic are presented. The main body of the paper is the ordered list of publications with abstract, classification and comments.
    corecore