180,506 research outputs found

    Natural Visualizations

    Get PDF
    This paper demonstrates the prevalence of a shared characteristic between visualizations and images of nature. We have analyzed visualization competitions and user studies of visualizations and found that the more preferred, better performing visualizations exhibit more natural characteristics. Due to our brain being wired to perceive natural images [SO01], testing a visualization for properties similar to those of natural images can help show how well our brain is capable of absorbing the data. In turn, a metric that finds a visualization’s similarity to a natural image may help determine the effectiveness of that visualization. We have found that the results of comparing the sizes and distribution of the objects in a visualization with those of natural standards strongly correlate to one’s preference of that visualization

    Developing bulletin board visualizations

    Get PDF
    Prevalent text-based representations within online communities and bulletin boards often make it difficult to contextualise the activity and interactions that are taking place. Visualisation techniques have been successfully applied in a range of domains to augment and enhance existing communication technologies such as bulletin boards. This paper presents a new approach to visualising bulletin board activity: BulB. The use of BulB visualisations enables users to gain an overall picture of bulletin board activity and develop an understanding of the overall interaction context

    Visualizing Fantasy Fiction: Design of a Class in Digital Scholarship and Visualization, including Research, Organization and Digital Visualization, that Does Not Require Programming or IT support

    Full text link
    This paper outlines a course to integrate digital visualizations into undergraduate research. These visualizations will include mapping and timelines of events, and the ability to hyperlink the events, characters, and story lines in a fantasy fiction story such as Lord of the Rings or A Game of Thrones. The digital scholarship will involve the methodology for collecting, organizing, and representing the data for the visualizations. The topic for the visualizations in this paper is fantasy fiction; however the methods to develop these visualizations will be applicable to many academic disciplines, including the humanities and social sciences. The paper outlines the justification for this class, the appropriate audience for this class, and the tools needed. Types of projects and homework assignments to implement the visualizations are suggested. It concludes with a syllabus outlining a typical schedule for this class

    Designing Improved Sediment Transport Visualizations

    Get PDF
    Monitoring, or more commonly, modeling of sediment transport in the coastal environment is a critical task with relevance to coastline stability, beach erosion, tracking environmental contaminants, and safety of navigation. Increased intensity and regularity of storms such as Superstorm Sandy heighten the importance of our understanding of sediment transport processes. A weakness of current modeling capabilities is the ability to easily visualize the result in an intuitive manner. Many of the available visualization software packages display only a single variable at once, usually as a two-dimensional, plan-view cross-section. With such limited display capabilities, sophisticated 3D models are undermined in both the interpretation of results and dissemination of information to the public. Here we explore a subset of existing modeling capabilities (specifically, modeling scour around man-made structures) and visualization solutions, examine their shortcomings and present a design for a 4D visualization for sediment transport studies that is based on perceptually-focused data visualization research and recent and ongoing developments in multivariate displays. Vector and scalar fields are co-displayed, yet kept independently identifiable utilizing human perception\u27s separation of color, texture, and motion. Bathymetry, sediment grain-size distribution, and forcing hydrodynamics are a subset of the variables investigated for simultaneous representation. Direct interaction with field data is tested to support rapid validation of sediment transport model results. Our goal is a tight integration of both simulated data and real world observations to support analysis and simulation of the impact of major sediment transport events such as hurricanes. We unite modeled results and field observations within a geodatabase designed as an application schema of the Arc Marine Data Model. Our real-world focus is on the Redbird Artificial Reef Site, roughly 18 nautical miles offshor- Delaware Bay, Delaware, where repeated surveys have identified active scour and bedform migration in 27 m water depth amongst the more than 900 deliberately sunken subway cars and vessels. Coincidently collected high-resolution multibeam bathymetry, backscatter, and side-scan sonar data from surface and autonomous underwater vehicle (AUV) systems along with complementary sub-bottom, grab sample, bottom imagery, and wave and current (via ADCP) datasets provide the basis for analysis. This site is particularly attractive due to overlap with the Delaware Bay Operational Forecast System (DBOFS), a model that provides historical and forecast oceanographic data that can be tested in hindcast against significant changes observed at the site during Superstorm Sandy and in predicting future changes through small-scale modeling around the individual reef objects

    Seasonal Change on Land and Water

    Get PDF
    The purpose of this resource is to further students' understanding of the causes of seasonal change using visualizations to compare the effects of incoming solar energy in the two hemispheres. The class reviews global visualizations of incoming sunlight and surface temperature and discusses seasonal change. Students use the visualizations to support inquiry on the differences in seasonal change in the Northern and Southern Hemispheres, culminating in an evidence-based argument about why one hemisphere experiences warmer summers although it receives less total solar energy. Educational levels: Middle school, High school

    NASA GIBS and Worldview: Visualizing NASA's Earth Science Data for All to Explore

    Get PDF
    For more than 20 years, the NASA Earth Observing System (EOS) has operated dozens of remote sensing satellites collecting nearly 15 Petabytes of data that span thousands of science parameters. Within these observations are keys the Earth Scientists have used to unlock many discoveries that we now understand about our planet. Also contained within these observations are a myriad of opportunities for learning and education. The challenge is making them accessible to educators and students in intuitive and simple ways so that effort can be spent on lesson enrichment and not overcoming technical hurdles.The NASA Global Imagery Browse Services (GIBS) system and NASA Worldview interactive mapping site provide a unique view into EOS data through daily full resolution visualizations of hundreds of Earth science parameters. For many of these parameters, visualizations are available within hours of acquisition from the satellite. For others, visualizations are available for the entire mission of the satellite. Accompanying the visualizations are visual aids such as color legends, place names, and orbit tracks. By using these visualizations, educators and students can observe natural phenomena that enrich a scientific education.This presentation will provide an overview of the visualizations available in NASA GIBS and Worldview and how they are accessed. Specific attention will be given to the newer capabilities and accomplishments, including: Support for geostationary sub-daily visualizations, Enhanced support for vector-based visualizations, Improved Worldview tour and snapshot capabilities, New imagery products across a growing set of scientific areas

    A tool for subjective and interactive visual data exploration

    Get PDF
    We present SIDE, a tool for Subjective and Interactive Visual Data Exploration, which lets users explore high dimensional data via subjectively informative 2D data visualizations. Many existing visual analytics tools are either restricted to specific problems and domains or they aim to find visualizations that align with user’s belief about the data. In contrast, our generic tool computes data visualizations that are surprising given a user’s current understanding of the data. The user’s belief state is represented as a set of projection tiles. Hence, this user-awareness offers users an efficient way to interactively explore yet-unknown features of complex high dimensional datasets
    corecore