672,236 research outputs found

    Fine-grained visualization pipelines and lazy functional languages

    Get PDF
    The pipeline model in visualization has evolved from a conceptual model of data processing into a widely used architecture for implementing visualization systems. In the process, a number of capabilities have been introduced, including streaming of data in chunks, distributed pipelines, and demand-driven processing. Visualization systems have invariably built on stateful programming technologies, and these capabilities have had to be implemented explicitly within the lower layers of a complex hierarchy of services. The good news for developers is that applications built on top of this hierarchy can access these capabilities without concern for how they are implemented. The bad news is that by freezing capabilities into low-level services expressive power and flexibility is lost. In this paper we express visualization systems in a programming language that more naturally supports this kind of processing model. Lazy functional languages support fine-grained demand-driven processing, a natural form of streaming, and pipeline-like function composition for assembling applications. The technology thus appears well suited to visualization applications. Using surface extraction algorithms as illustrative examples, and the lazy functional language Haskell, we argue the benefits of clear and concise expression combined with fine-grained, demand-driven computation. Just as visualization provides insight into data, functional abstraction provides new insight into visualization

    3-D interactive visualisation tools for HI spectral line imaging

    Get PDF
    Upcoming HI surveys will deliver such large datasets that automated processing using the full 3-D information to find and characterize HI objects is unavoidable. Full 3-D visualization is an essential tool for enabling qualitative and quantitative inspection and analysis of the 3-D data, which is often complex in nature. Here we present SlicerAstro\tt{SlicerAstro}, an open-source extension of 3DSlicer, a multi-platform open source software package for visualization and medical image processing, which we developed for the inspection and analysis of HI spectral line data. We describe its initial capabilities, including 3-D filtering, 3-D selection and comparative modelling

    Hardware-accelerated interactive data visualization for neuroscience in Python.

    Get PDF
    Large datasets are becoming more and more common in science, particularly in neuroscience where experimental techniques are rapidly evolving. Obtaining interpretable results from raw data can sometimes be done automatically; however, there are numerous situations where there is a need, at all processing stages, to visualize the data in an interactive way. This enables the scientist to gain intuition, discover unexpected patterns, and find guidance about subsequent analysis steps. Existing visualization tools mostly focus on static publication-quality figures and do not support interactive visualization of large datasets. While working on Python software for visualization of neurophysiological data, we developed techniques to leverage the computational power of modern graphics cards for high-performance interactive data visualization. We were able to achieve very high performance despite the interpreted and dynamic nature of Python, by using state-of-the-art, fast libraries such as NumPy, PyOpenGL, and PyTables. We present applications of these methods to visualization of neurophysiological data. We believe our tools will be useful in a broad range of domains, in neuroscience and beyond, where there is an increasing need for scalable and fast interactive visualization

    The design and instrumentation of the Purdue annular cascade facility with initial data acquisition and analysis

    Get PDF
    Three dimensional aerodynamic data, required to validate and/or indicate necessary refinements to inviscid and viscous analyses of the flow through turbomachine blade rows, are discussed. Instrumentation and capabilities for pressure measurement, probe insertion and traversing, and flow visualization are reviewed. Advanced measurement techniques including Laser Doppler Anemometers, are considered. Data processing is reviewed. Predictions were correlated with the experimental data. A flow visualization technique using helium filled soap bubbles was demonstrated

    Computer-Aided System for Wind Turbine Data Analysis

    Get PDF
    Context: The current work on wind turbine failure detection focuses on researching suitable signal processing algorithms and developing efficient diagnosis algorithms. The laboratory research would involve large and complex data, and it can be a daunting task. Aims: To develop a Computer-Aided system for assisting experts to conduct an efficient laboratory research on wind turbine data analysis. System is expected to provide data visualization, data manipulation, massive data processing and wind turbine failure detection. Method: 50G off-line SCADA data and 4 confident diagnosis algorithms were used in this project. Apart from the instructions from supervisor, this project also gained help from two experts from Engineering Department. Java and Microsoft SQL database were used to develop the system. Results: Data visualization provided 6 different charting solutions and together with robust user interactions. 4 failure diagnosis solutions and data manipulations were provided in the system. In addition, dedicated database server and Matlab API with Java RMI were used to resolve the massive data processing problem. Conclusions: Almost all of the deliverables were completed. Friendly GUI and useful functionalities make user feel more comfortable. The final product does enable experts to conduct an efficient laboratory research. The end of this project also gave some potential extensions of the system

    Image processing mini manual

    Get PDF
    The intent is to provide an introduction to the image processing capabilities available at the Langley Research Center (LaRC) Central Scientific Computing Complex (CSCC). Various image processing software components are described. Information is given concerning the use of these components in the Data Visualization and Animation Laboratory at LaRC

    P ORTOLAN: a Model-Driven Cartography Framework

    Get PDF
    Processing large amounts of data to extract useful information is an essential task within companies. To help in this task, visualization techniques have been commonly used due to their capacity to present data in synthesized views, easier to understand and manage. However, achieving the right visualization display for a data set is a complex cartography process that involves several transformation steps to adapt the (domain) data to the (visualization) data format expected by visualization tools. To maximize the benefits of visualization we propose Portolan, a generic model-driven cartography framework that facilitates the discovery of the data to visualize, the specification of view definitions for that data and the transformations to bridge the gap with the visualization tools. Our approach has been implemented on top of the Eclipse EMF modeling framework and validated on three different use cases
    corecore