4,941 research outputs found

    Persistent Homology Guided Force-Directed Graph Layouts

    Full text link
    Graphs are commonly used to encode relationships among entities, yet their abstractness makes them difficult to analyze. Node-link diagrams are popular for drawing graphs, and force-directed layouts provide a flexible method for node arrangements that use local relationships in an attempt to reveal the global shape of the graph. However, clutter and overlap of unrelated structures can lead to confusing graph visualizations. This paper leverages the persistent homology features of an undirected graph as derived information for interactive manipulation of force-directed layouts. We first discuss how to efficiently extract 0-dimensional persistent homology features from both weighted and unweighted undirected graphs. We then introduce the interactive persistence barcode used to manipulate the force-directed graph layout. In particular, the user adds and removes contracting and repulsing forces generated by the persistent homology features, eventually selecting the set of persistent homology features that most improve the layout. Finally, we demonstrate the utility of our approach across a variety of synthetic and real datasets

    Multimapper: Data Density Sensitive Topological Visualization

    Full text link
    Mapper is an algorithm that summarizes the topological information contained in a dataset and provides an insightful visualization. It takes as input a point cloud which is possibly high-dimensional, a filter function on it and an open cover on the range of the function. It returns the nerve simplicial complex of the pullback of the cover. Mapper can be considered a discrete approximation of the topological construct called Reeb space, as analysed in the 11-dimensional case by [Carriere et al.,2018]. Despite its success in obtaining insights in various fields such as in [Kamruzzaman et al., 2016], Mapper is an ad hoc technique requiring lots of parameter tuning. There is also no measure to quantify goodness of the resulting visualization, which often deviates from the Reeb space in practice. In this paper, we introduce a new cover selection scheme for data that reduces the obscuration of topological information at both the computation and visualisation steps. To achieve this, we replace global scale selection of cover with a scale selection scheme sensitive to local density of data points. We also propose a method to detect some deviations in Mapper from Reeb space via computation of persistence features on the Mapper graph.Comment: Accepted at ICDM

    Visual Detection of Structural Changes in Time-Varying Graphs Using Persistent Homology

    Full text link
    Topological data analysis is an emerging area in exploratory data analysis and data mining. Its main tool, persistent homology, has become a popular technique to study the structure of complex, high-dimensional data. In this paper, we propose a novel method using persistent homology to quantify structural changes in time-varying graphs. Specifically, we transform each instance of the time-varying graph into metric spaces, extract topological features using persistent homology, and compare those features over time. We provide a visualization that assists in time-varying graph exploration and helps to identify patterns of behavior within the data. To validate our approach, we conduct several case studies on real world data sets and show how our method can find cyclic patterns, deviations from those patterns, and one-time events in time-varying graphs. We also examine whether persistence-based similarity measure as a graph metric satisfies a set of well-established, desirable properties for graph metrics
    • …
    corecore