4,850 research outputs found

    DeepPoint3D: Learning Discriminative Local Descriptors using Deep Metric Learning on 3D Point Clouds

    Full text link
    Learning local descriptors is an important problem in computer vision. While there are many techniques for learning local patch descriptors for 2D images, recently efforts have been made for learning local descriptors for 3D points. The recent progress towards solving this problem in 3D leverages the strong feature representation capability of image based convolutional neural networks by utilizing RGB-D or multi-view representations. However, in this paper, we propose to learn 3D local descriptors by directly processing unstructured 3D point clouds without needing any intermediate representation. The method constitutes a deep network for learning permutation invariant representation of 3D points. To learn the local descriptors, we use a multi-margin contrastive loss which discriminates between similar and dissimilar points on a surface while also leveraging the extent of dissimilarity among the negative samples at the time of training. With comprehensive evaluation against strong baselines, we show that the proposed method outperforms state-of-the-art methods for matching points in 3D point clouds. Further, we demonstrate the effectiveness of the proposed method on various applications achieving state-of-the-art results

    Equivariant Multi-View Networks

    Full text link
    Several popular approaches to 3D vision tasks process multiple views of the input independently with deep neural networks pre-trained on natural images, achieving view permutation invariance through a single round of pooling over all views. We argue that this operation discards important information and leads to subpar global descriptors. In this paper, we propose a group convolutional approach to multiple view aggregation where convolutions are performed over a discrete subgroup of the rotation group, enabling, thus, joint reasoning over all views in an equivariant (instead of invariant) fashion, up to the very last layer. We further develop this idea to operate on smaller discrete homogeneous spaces of the rotation group, where a polar view representation is used to maintain equivariance with only a fraction of the number of input views. We set the new state of the art in several large scale 3D shape retrieval tasks, and show additional applications to panoramic scene classification.Comment: Camera-ready. Accepted to ICCV'19 as oral presentatio

    Self-supervised Learning of Dense Shape Correspondence

    Full text link
    We introduce the first completely unsupervised correspondence learning approach for deformable 3D shapes. Key to our model is the understanding that natural deformations (such as changes in pose) approximately preserve the metric structure of the surface, yielding a natural criterion to drive the learning process toward distortion-minimizing predictions. On this basis, we overcome the need for annotated data and replace it by a purely geometric criterion. The resulting learning model is class-agnostic, and is able to leverage any type of deformable geometric data for the training phase. In contrast to existing supervised approaches which specialize on the class seen at training time, we demonstrate stronger generalization as well as applicability to a variety of challenging settings. We showcase our method on a wide selection of correspondence benchmarks, where we outperform other methods in terms of accuracy, generalization, and efficiency

    ALIGNet: Partial-Shape Agnostic Alignment via Unsupervised Learning

    Full text link
    The process of aligning a pair of shapes is a fundamental operation in computer graphics. Traditional approaches rely heavily on matching corresponding points or features to guide the alignment, a paradigm that falters when significant shape portions are missing. These techniques generally do not incorporate prior knowledge about expected shape characteristics, which can help compensate for any misleading cues left by inaccuracies exhibited in the input shapes. We present an approach based on a deep neural network, leveraging shape datasets to learn a shape-aware prior for source-to-target alignment that is robust to shape incompleteness. In the absence of ground truth alignments for supervision, we train a network on the task of shape alignment using incomplete shapes generated from full shapes for self-supervision. Our network, called ALIGNet, is trained to warp complete source shapes to incomplete targets, as if the target shapes were complete, thus essentially rendering the alignment partial-shape agnostic. We aim for the network to develop specialized expertise over the common characteristics of the shapes in each dataset, thereby achieving a higher-level understanding of the expected shape space to which a local approach would be oblivious. We constrain ALIGNet through an anisotropic total variation identity regularization to promote piecewise smooth deformation fields, facilitating both partial-shape agnosticism and post-deformation applications. We demonstrate that ALIGNet learns to align geometrically distinct shapes, and is able to infer plausible mappings even when the target shape is significantly incomplete. We show that our network learns the common expected characteristics of shape collections, without over-fitting or memorization, enabling it to produce plausible deformations on unseen data during test time.Comment: To be presented at SIGGRAPH Asia 201

    Global spectral graph wavelet signature for surface analysis of carpal bones

    Full text link
    In this paper, we present a spectral graph wavelet approach for shape analysis of carpal bones of human wrist. We apply a metric called global spectral graph wavelet signature for representation of cortical surface of the carpal bone based on eigensystem of Laplace-Beltrami operator. Furthermore, we propose a heuristic and efficient way of aggregating local descriptors of a carpal bone surface to global descriptor. The resultant global descriptor is not only isometric invariant, but also much more efficient and requires less memory storage. We perform experiments on shape of the carpal bones of ten women and ten men from a publicly-available database. Experimental results show the excellency of the proposed GSGW compared to recent proposed GPS embedding approach for comparing shapes of the carpal bones across populations.Comment: arXiv admin note: substantial text overlap with arXiv:1705.0625

    Perspectival Knowledge in PSOA RuleML: Representation, Model Theory, and Translation

    Full text link
    In Positional-Slotted Object-Applicative (PSOA) RuleML, a predicate application (atom) can have an Object IDentifier (OID) and descriptors that may be positional arguments (tuples) or attribute-value pairs (slots). PSOA RuleML explicitly specifies for each descriptor whether it is to be interpreted under the perspective of the predicate in whose scope it occurs. This predicate-dependency dimension refines the space between oidless, positional atoms (relationships) and oidful, slotted atoms (framepoints): While relationships use only a predicate-scope-sensitive (predicate-dependent) tuple and framepoints use only predicate-scope-insensitive (predicate-independent) slots, PSOA uses a systematics of orthogonal constructs also permitting atoms with (predicate-)independent tuples and atoms with (predicate-)dependent slots. This supports data and knowledge representation where a slot attribute can have different values depending on the predicate. PSOA thus extends object-oriented multi-membership and multiple inheritance. Based on objectification, PSOA laws are given: Besides unscoping and centralization, the semantic restriction and transformation of describution permits rescoping of one atom's independent descriptors to another atom with the same OID but a different predicate. For inheritance, default descriptors are realized by rules. On top of a metamodel and a Grailog visualization, PSOA's atom systematics for facts, queries, and rules is explained. The presentation and (XML-)serialization syntaxes of PSOA RuleML are introduced. Its model-theoretic semantics is formalized by extending the interpretation functions for dependent descriptors. The open-source PSOATransRun system realizes PSOA RuleML by a translator to runtime predicates, including for dependent tuples (prdtupterm) and slots (prdsloterm). Our tests show efficiency advantages of dependent and tupled modeling.Comment: 39 pages, 5 figures, 2 tables; updates for PSOATransRun 1.3.1 to 1.4.2; refined terminology and metamode

    Attribute CNNs for Word Spotting in Handwritten Documents

    Full text link
    Word spotting has become a field of strong research interest in document image analysis over the last years. Recently, AttributeSVMs were proposed which predict a binary attribute representation. At their time, this influential method defined the state-of-the-art in segmentation-based word spotting. In this work, we present an approach for learning attribute representations with Convolutional Neural Networks (CNNs). By taking a probabilistic perspective on training CNNs, we derive two different loss functions for binary and real-valued word string embeddings. In addition, we propose two different CNN architectures, specifically designed for word spotting. These architectures are able to be trained in an end-to-end fashion. In a number of experiments, we investigate the influence of different word string embeddings and optimization strategies. We show our Attribute CNNs to achieve state-of-the-art results for segmentation-based word spotting on a large variety of data sets.Comment: under review at IJDA

    Multi-scale Volumes for Deep Object Detection and Localization

    Full text link
    This study aims to analyze the benefits of improved multi-scale reasoning for object detection and localization with deep convolutional neural networks. To that end, an efficient and general object detection framework which operates on scale volumes of a deep feature pyramid is proposed. In contrast to the proposed approach, most current state-of-the-art object detectors operate on a single-scale in training, while testing involves independent evaluation across scales. One benefit of the proposed approach is in better capturing of multi-scale contextual information, resulting in significant gains in both detection performance and localization quality of objects on the PASCAL VOC dataset and a multi-view highway vehicles dataset. The joint detection and localization scale-specific models are shown to especially benefit detection of challenging object categories which exhibit large scale variation as well as detection of small objects.Comment: To appear in Pattern Recognition 201

    Principal Polynomial Analysis

    Full text link
    This paper presents a new framework for manifold learning based on a sequence of principal polynomials that capture the possibly nonlinear nature of the data. The proposed Principal Polynomial Analysis (PPA) generalizes PCA by modeling the directions of maximal variance by means of curves, instead of straight lines. Contrarily to previous approaches, PPA reduces to performing simple univariate regressions, which makes it computationally feasible and robust. Moreover, PPA shows a number of interesting analytical properties. First, PPA is a volume-preserving map, which in turn guarantees the existence of the inverse. Second, such an inverse can be obtained in closed form. Invertibility is an important advantage over other learning methods, because it permits to understand the identified features in the input domain where the data has physical meaning. Moreover, it allows to evaluate the performance of dimensionality reduction in sensible (input-domain) units. Volume preservation also allows an easy computation of information theoretic quantities, such as the reduction in multi-information after the transform. Third, the analytical nature of PPA leads to a clear geometrical interpretation of the manifold: it allows the computation of Frenet-Serret frames (local features) and of generalized curvatures at any point of the space. And fourth, the analytical Jacobian allows the computation of the metric induced by the data, thus generalizing the Mahalanobis distance. These properties are demonstrated theoretically and illustrated experimentally. The performance of PPA is evaluated in dimensionality and redundancy reduction, in both synthetic and real datasets from the UCI repository

    Semantic Image Networks for Human Action Recognition

    Full text link
    In this paper, we propose the use of a semantic image, an improved representation for video analysis, principally in combination with Inception networks. The semantic image is obtained by applying localized sparse segmentation using global clustering (LSSGC) prior to the approximate rank pooling which summarizes the motion characteristics in single or multiple images. It incorporates the background information by overlaying a static background from the window onto the subsequent segmented frames. The idea is to improve the action-motion dynamics by focusing on the region which is important for action recognition and encoding the temporal variances using the frame ranking method. We also propose the sequential combination of Inception-ResNetv2 and long-short-term memory network (LSTM) to leverage the temporal variances for improved recognition performance. Extensive analysis has been carried out on UCF101 and HMDB51 datasets which are widely used in action recognition studies. We show that (i) the semantic image generates better activations and converges faster than its original variant, (ii) using segmentation prior to approximate rank pooling yields better recognition performance, (iii) The use of LSTM leverages the temporal variance information from approximate rank pooling to model the action behavior better than the base network, (iv) the proposed representations can be adaptive as they can be used with existing methods such as temporal segment networks to improve the recognition performance, and (v) our proposed four-stream network architecture comprising of semantic images and semantic optical flows achieves state-of-the-art performance, 95.9% and 73.5% recognition accuracy on UCF101 and HMDB51, respectively.Comment: 30 page
    • …
    corecore