6,129 research outputs found

    McStas and Mantid integration

    Full text link
    McStas and Mantid are two well established software frameworks within the neutron scattering community. McStas has been primarily used for simulating the neutron transport of instruments, while Mantid has been primarily used for data reduction. We report here the status of our work done on the interoperability between the instrument simulation software McStas and the data reduction software Mantid. This provides a demonstration of how to successfully link together two software that otherwise have been developed independently, and in particular here show how this has been achieved for an instrument simulation software and a data reduction software. This paper will also provide examples of some of the expected future enhanced analysis that can be achieved from combining accurate instrument and sample simulations with software for correcting raw data. In the case of this work for raw data collected at large scale neutron facilities.Comment: 17 pages, 12 figures, POSTPRINT with proofs of article submitted to Journal of Neutron Researc

    The visibility of models: using technology as a bridge between mathematics and engineering

    Get PDF
    Engineering mathematics is traditionally conceived as a set of unambiguous mathematical tools applied to solving engineering problems, and it would seem that modern mathematical software is making the toolbox metaphor ever more appropriate. We question the validity of this metaphor, and make the case that engineers do in fact use mathematics as more than a set of passive tools—that mathematical models for phenomena depend critically on the settings in which they are used, and the tools with which they are expressed. The perennial debate over whether mathematics should be taught by mathematicians or by engineers looks increasingly anachronistic in the light of technological change, and we think it is more instructive to examine the potential of technology for changing the relationships between mathematicians and engineers, and for connecting their respective knowledge domains in new ways

    Development of interactive and remote learning instruments for engineering education

    Get PDF
    Many educators have argued for and against the use of remote aids in support of student learning. Some proponents argue that only remote laboratories should be used whereas others argue for the requirement for hands on experience with associated tactical, visual and auditory learning experiences. In this paper we present the methodology for developing a middle ground Virtual Instruments that can be used as a complement learning aid to the hands on laboratory and also if necessary, with added features, can be used as a remote version of the laboratory

    PROTEUS: an immersive tool for exploring the world of cultural heritage across space and time scales

    Get PDF
    AbstractIn the field of digital humanities, it is increasingly necessary to develop and validate virtual reality tools that are capable of combining various scientific data in a virtualized context providing also access and user friendly consultation of online repositories. This paper reports the main aspects of the implementation of a virtual reality tool integrated with an online repository for storing 3D models, metadata and chemical analyses related to different sectors of digital humanities. The virtual reality software, developed for the Oculus Quest 2 hardware, is called PROTEUS and allows for seamless transition from the macroscopic world of digital humanities to the microscopic world of molecular sciences. The paper illustrates, by means of some case studies, the performances of this innovative tool that permits the researcher to understand and manipulate objects, to test hypotheses and to seek meaningful results, visualising the metadata while changing the parameters of the simulation in a dynamic and interactive way. This represents also a significant step forward in the democratisation of science, thanks to an user-friendly and immersive access to advanced scientific algorithms, which allow the natural perception of structural and topological features of the underlying molecular and supra-molecular systems. Graphical Abstrac

    A novel haptic model and environment for maxillofacial surgical operation planning and manipulation

    Get PDF
    This paper presents a practical method and a new haptic model to support manipulations of bones and their segments during the planning of a surgical operation in a virtual environment using a haptic interface. To perform an effective dental surgery it is important to have all the operation related information of the patient available beforehand in order to plan the operation and avoid any complications. A haptic interface with a virtual and accurate patient model to support the planning of bone cuts is therefore critical, useful and necessary for the surgeons. The system proposed uses DICOM images taken from a digital tomography scanner and creates a mesh model of the filtered skull, from which the jaw bone can be isolated for further use. A novel solution for cutting the bones has been developed and it uses the haptic tool to determine and define the bone-cutting plane in the bone, and this new approach creates three new meshes of the original model. Using this approach the computational power is optimized and a real time feedback can be achieved during all bone manipulations. During the movement of the mesh cutting, a novel friction profile is predefined in the haptical system to simulate the force feedback feel of different densities in the bone

    In-situ Analysis of Laminated Composite Materials by X-ray Micro-Computed Tomography and Digital Volume Correlation

    Get PDF
    The complex mechanical behaviour of composite materials, due to internal heterogeneity and multi-layered composition impose deeper studies. This paper presents an experimental investigation technique to perform volume kinematic measurements in composite materials. The association of X-ray micro-computed tomography acquisitions and Digital Volume Correlation (DVC) technique allows the measurement of displacements and deformations in the whole volume of composite specimen. To elaborate the latter, composite fibres and epoxy resin are associated with metallic particles to create contrast during X-ray acquisition. A specific in situ loading device is presented for three-point bending tests, which enables the visualization of transverse shear effects in composite structures

    PHIL photoinjector test line

    Full text link
    LAL is now equiped with its own platform for photoinjectors tests and Research and Developement, named PHIL (PHotoInjectors at LAL). This facility has two main purposes: push the limits of the photoinjectors performances working on both the design and the associated technology and provide a low energy (MeV) short pulses (ps) electron beam for the interested users. Another very important goal of this machine will be to provide an opportunity to form accelerator physics students, working in a high technology environment. To achieve this goal a test line was realised equipped with an RF source, magnets and beam diagnostics. In this article we will desrcibe the PHIL beamline and its characteristics together with the description of the first two photoinjector realised in LAL and tested: the ALPHAX and the PHIN RF Guns
    corecore