6 research outputs found

    Minimizing Supervision for Vision-Based Perception and Control in Autonomous Driving

    Get PDF
    The research presented in this dissertation focuses on reducing the need for supervision in two tasks related to autonomous driving: end-to-end steering and free space segmentation. For end-to-end steering, we devise a new regularization technique which relies on pixel-relevance heatmaps to force the steering model to focus on lane markings. This improves performance across a variety of offline metrics. In relation to this work, we publicly release the RoboBus dataset, which consists of extensive driving data recorded using a commercial bus on a cross-border public transport route on the Luxembourgish-French border. We also tackle pseudo-supervised free space segmentation from three different angles: (1) we propose a Stochastic Co-Teaching training scheme that explicitly attempts to filter out the noise in pseudo-labels, (2) we study the impact of self-training and of different data augmentation techniques, (3) we devise a novel pseudo-label generation method based on road plane distance estimation from approximate depth maps. Finally, we investigate semi-supervised free space estimation and find that combining our techniques with a restricted subset of labeled samples results in substantial improvements in IoU, Precision and Recall

    Closed-form continuous-time neural networks

    Get PDF
    Continuous-time neural networks are a class of machine learning systems that can tackle representation learning on spatiotemporal decision-making tasks. These models are typically represented by continuous differential equations. However, their expressive power when they are deployed on computers is bottlenecked by numerical differential equation solvers. This limitation has notably slowed down the scaling and understanding of numerous natural physical phenomena such as the dynamics of nervous systems. Ideally, we would circumvent this bottleneck by solving the given dynamical system in closed form. This is known to be intractable in general. Here, we show that it is possible to closely approximate the interaction between neurons and synapses—the building blocks of natural and artificial neural networks—constructed by liquid time-constant networks efficiently in closed form. To this end, we compute a tightly bounded approximation of the solution of an integral appearing in liquid time-constant dynamics that has had no known closed-form solution so far. This closed-form solution impacts the design of continuous-time and continuous-depth neural models. For instance, since time appears explicitly in closed form, the formulation relaxes the need for complex numerical solvers. Consequently, we obtain models that are between one and five orders of magnitude faster in training and inference compared with differential equation-based counterparts. More importantly, in contrast to ordinary differential equation-based continuous networks, closed-form networks can scale remarkably well compared with other deep learning instances. Lastly, as these models are derived from liquid networks, they show good performance in time-series modelling compared with advanced recurrent neural network models
    corecore