21 research outputs found

    Exploring space situational awareness using neuromorphic event-based cameras

    Get PDF
    The orbits around earth are a limited natural resource and one that hosts a vast range of vital space-based systems that support international systems use by both commercial industries, civil organisations, and national defence. The availability of this space resource is rapidly depleting due to the ever-growing presence of space debris and rampant overcrowding, especially in the limited and highly desirable slots in geosynchronous orbit. The field of Space Situational Awareness encompasses tasks aimed at mitigating these hazards to on-orbit systems through the monitoring of satellite traffic. Essential to this task is the collection of accurate and timely observation data. This thesis explores the use of a novel sensor paradigm to optically collect and process sensor data to enhance and improve space situational awareness tasks. Solving this issue is critical to ensure that we can continue to utilise the space environment in a sustainable way. However, these tasks pose significant engineering challenges that involve the detection and characterisation of faint, highly distant, and high-speed targets. Recent advances in neuromorphic engineering have led to the availability of high-quality neuromorphic event-based cameras that provide a promising alternative to the conventional cameras used in space imaging. These cameras offer the potential to improve the capabilities of existing space tracking systems and have been shown to detect and track satellites or ‘Resident Space Objects’ at low data rates, high temporal resolutions, and in conditions typically unsuitable for conventional optical cameras. This thesis presents a thorough exploration of neuromorphic event-based cameras for space situational awareness tasks and establishes a rigorous foundation for event-based space imaging. The work conducted in this project demonstrates how to enable event-based space imaging systems that serve the goals of space situational awareness by providing accurate and timely information on the space domain. By developing and implementing event-based processing techniques, the asynchronous operation, high temporal resolution, and dynamic range of these novel sensors are leveraged to provide low latency target acquisition and rapid reaction to challenging satellite tracking scenarios. The algorithms and experiments developed in this thesis successfully study the properties and trade-offs of event-based space imaging and provide comparisons with traditional observing methods and conventional frame-based sensors. The outcomes of this thesis demonstrate the viability of event-based cameras for use in tracking and space imaging tasks and therefore contribute to the growing efforts of the international space situational awareness community and the development of the event-based technology in astronomy and space science applications

    Optical based statistical space objects tracking for catalogue maintenance

    Get PDF
    The number of space objects has grown substantially in the past decades due to new launches, regular mission activities, and breakup events. This has significantly affected the space environment and the development of the space industry. To ensure safe operation of space assets, Space Situational Awareness (SSA) has attracted considerable attention in recent years. One primary strategy in SSA is to establish and maintain a Space Object Catalogue (SOC) to provide timely updated data for SSA applications, e.g., conjunction analysis, collision avoidance manoeuvring. This thesis investigates three techniques for SOC maintenance, namely the tracklet association method for initial orbit determination, the multi-target tracking method for the refinement of orbital state estimation, and multi-sensor tasking method for the optimisation of sensor resources. Generally speaking, due to the limited number of optical sensors used to track the large population of space objects, the obtained observational arcs for many targets are very short. Such short arcs, which contain a small number of angular observations, are referred as tracklets. Given such limited data, typical orbit determination methods, e.g., Laplace, Gaussian, Double-R methods, may fail to produce a valid orbital solution. By contrast, tracklet association methods compare and correlate multiple tracklets across time, and following successful association, a reliable initial orbital state can be further determined for SOC maintenance. This thesis proposes an improved initial value problem optimisation method for accurate and efficient tracklet association, and a common ellipse method to distinguish false associations of tracklets from objects in the same constellation. The proposed methods are validated using real optical data collected from the Mount Stromlo Observatory, Canberra, Australia. Furthermore, another challenging task in SSA is to track multiple objects for the maintenance of a catalog. The Bayesian multi-target tracking filter addresses this issue by associating measurements to initially known or newly detected targets and simultaneously estimating the timevarying number of targets and their orbital states. In order to achieve efficient tracking of the new space objects, a novel birth model using the Boundary Value Problem (BVP) approach is proposed. The proposed BVP birth model is implemented in the Labelled Multi-Bernoulli (LMB) filter, which is an efficient multi-target tracker developed based on the Random Finite Set (RFS) theory, for improved computational efficiency of new space object tracking. Simulation results indicate that the computational efficiency of the proposed method significantly outperforms the state-of-the-art methods. Finally, as limited sensors are available for SOC maintenance, an appropriate sensor tasking scheme is essential for the optimisation of sensor resources. The optimal sensor tasking command allocates multiple sensors to take the best action and produce useful measurements for more accurate orbital state estimation. In this thesis, an analytical form is derived for the Rényi divergence of LMB RFS in which each target state density is a single Gaussian component. The obtained analytical Rényi divergence is formulated as a reward function for multi-sensor tasking, which improves the computational efficiency, especially for large-scale space object tracking. In addition, this thesis further investigates the benefits of using the analytical Rényi  divergence and various space-based and ground-based sensor networks for accurate tracking of objects in geosynchronous Earth orbit

    Deep Learning and Optimization in Visual Target Tracking

    Get PDF
    Visual tracking is the process of estimating states of a moving object in a dynamic frame sequence. It has been considered as one of the most paramount and challenging topics in computer vision. Although numerous tracking methods have been introduced, developing a robust algorithm that can handle different challenges still remains unsolved. In this dissertation, we introduce four different trackers and evaluate their performance in terms of tracking accuracy on challenging frame sequences. Each of these trackers aims to address the drawbacks of their peers. The first developed method is called a structured multi-task multi-view tracking (SMTMVT) method, which exploits the sparse appearance model in the particle filter frame work to track targets under different challenges. Specifically, we extract features of the target candidates from different views and sparsely represent them by a linear combination of templates of different views. Unlike the conventional sparse trackers, SMTMVT not only jointly considers the relationship between different tasks and different views but also retains the structures among different views in a robust multi-task multi-view formulation. The second developed method is called a structured group local sparse tracker (SGLST), which exploits local patches inside target candidates in the particle filter framework. Unlike the conventional local sparse trackers, the proposed optimization model in SGLST not only adopts local and spatial information of the target candidates but also attains the spatial layout structure among them by employing a group-sparsity regularization term. To solve the optimization model, we propose an efficient numerical algorithm consisting of two subproblems with closed-form solutions. The third developed tracker is called a robust structured tracker using local deep features (STLDF). This tracker exploits the deep features of local patches inside target candidates and sparsely represents them by a set of templates in the particle filter framework. The proposed STLDF utilizes a new optimization model, which employs a group-sparsity regularization term to adopt local and spatial information of the target candidates and attain the spatial layout structure among them. To solve the optimization model, we adopt the alternating direction method of multiplier (ADMM) to design a fast and parallel numerical algorithm by deriving the augmented Lagrangian of the optimization model into two closed-form solution problems: the quadratic problem and the Euclidean norm projection onto probability simplex constraints problem. The fourth developed tracker is called an appearance variation adaptation (AVA) tracker, which aligns the feature distributions of target regions over time by learning an adaptation mask in an adversarial network. The proposed adversarial network consists of a generator and a discriminator network that compete with each other over optimizing a discriminator loss in a mini-max optimization problem. Specifically, the discriminator network aims to distinguish recent target regions from earlier ones by minimizing the discriminator loss, while the generator network aims to produce an adaptation mask to maximize the discriminator loss. We incorporate a gradient reverse layer in the adversarial network to solve the aforementioned mini-max optimization in an end-to-end manner. We compare the performance of the proposed four trackers with the most recent state-of-the-art trackers by doing extensive experiments on publicly available frame sequences, including OTB50, OTB100, VOT2016, and VOT2018 tracking benchmarks

    LIPIcs, Volume 277, GIScience 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 277, GIScience 2023, Complete Volum

    Technology 2002: the Third National Technology Transfer Conference and Exposition, Volume 1

    Get PDF
    The proceedings from the conference are presented. The topics covered include the following: computer technology, advanced manufacturing, materials science, biotechnology, and electronics

    Probabilistic Risk Assessment Procedures Guide for NASA Managers and Practitioners (Second Edition)

    Get PDF
    Probabilistic Risk Assessment (PRA) is a comprehensive, structured, and logical analysis method aimed at identifying and assessing risks in complex technological systems for the purpose of cost-effectively improving their safety and performance. NASA's objective is to better understand and effectively manage risk, and thus more effectively ensure mission and programmatic success, and to achieve and maintain high safety standards at NASA. NASA intends to use risk assessment in its programs and projects to support optimal management decision making for the improvement of safety and program performance. In addition to using quantitative/probabilistic risk assessment to improve safety and enhance the safety decision process, NASA has incorporated quantitative risk assessment into its system safety assessment process, which until now has relied primarily on a qualitative representation of risk. Also, NASA has recently adopted the Risk-Informed Decision Making (RIDM) process [1-1] as a valuable addition to supplement existing deterministic and experience-based engineering methods and tools. Over the years, NASA has been a leader in most of the technologies it has employed in its programs. One would think that PRA should be no exception. In fact, it would be natural for NASA to be a leader in PRA because, as a technology pioneer, NASA uses risk assessment and management implicitly or explicitly on a daily basis. NASA has probabilistic safety requirements (thresholds and goals) for crew transportation system missions to the International Space Station (ISS) [1-2]. NASA intends to have probabilistic requirements for any new human spaceflight transportation system acquisition. Methods to perform risk and reliability assessment in the early 1960s originated in U.S. aerospace and missile programs. Fault tree analysis (FTA) is an example. It would have been a reasonable extrapolation to expect that NASA would also become the world leader in the application of PRA. That was, however, not to happen. Early in the Apollo program, estimates of the probability for a successful roundtrip human mission to the moon yielded disappointingly low (and suspect) values and NASA became discouraged from further performing quantitative risk analyses until some two decades later when the methods were more refined, rigorous, and repeatable. Instead, NASA decided to rely primarily on the Hazard Analysis (HA) and Failure Modes and Effects Analysis (FMEA) methods for system safety assessment

    12th International Conference on Geographic Information Science: GIScience 2023, September 12–15, 2023, Leeds, UK

    Get PDF
    No abstract available

    A Statistical Approach to the Alignment of fMRI Data

    Get PDF
    Multi-subject functional Magnetic Resonance Image studies are critical. The anatomical and functional structure varies across subjects, so the image alignment is necessary. We define a probabilistic model to describe functional alignment. Imposing a prior distribution, as the matrix Fisher Von Mises distribution, of the orthogonal transformation parameter, the anatomical information is embedded in the estimation of the parameters, i.e., penalizing the combination of spatially distant voxels. Real applications show an improvement in the classification and interpretability of the results compared to various functional alignment methods

    A comparison of the CAR and DAGAR spatial random effects models with an application to diabetics rate estimation in Belgium

    Get PDF
    When hierarchically modelling an epidemiological phenomenon on a finite collection of sites in space, one must always take a latent spatial effect into account in order to capture the correlation structure that links the phenomenon to the territory. In this work, we compare two autoregressive spatial models that can be used for this purpose: the classical CAR model and the more recent DAGAR model. Differently from the former, the latter has a desirable property: its ρ parameter can be naturally interpreted as the average neighbor pair correlation and, in addition, this parameter can be directly estimated when the effect is modelled using a DAGAR rather than a CAR structure. As an application, we model the diabetics rate in Belgium in 2014 and show the adequacy of these models in predicting the response variable when no covariates are available
    corecore