37 research outputs found

    Characterization and Compensation of XY Micropositioning Robots using Vision and Pseudo-Periodic Encoded Patterns.

    No full text
    International audienceAccuracy is an important issue for microrobotic applications. High accuracy is usually a necessary condition for reliable system performance. However there are many sources of inaccuracy acting on the microrobotic systems. Characterization and compensation enable reduction of the systematic errors of the micropositioning stages and improve the positioning accuracy. In this paper, we propose a novel method based on vision and pseudo-periodic encoded patterns to characterize the position-dependent errors along XY stages. This method is particularly suitable for microscale motion characterization thanks to its high range-to-resolution ratio and avoidance of camera calibration. Based on look-up tables and interpolation techniques, we perform compensation and get improved accuracy. The experimental results show an accuracy improved by 84% for square tracking and by 68% for random points reaching (respectively from 22 μm to 3.5 μm and from 22 μm to 7 μm)

    Recent advances in the study of Micro/Nano Robotics in France.

    No full text
    International audienceIn France, during the last decade, significant research activities have been performed in the field of micro and nano robotics. Generally speaking the microrobotic field deals with the design, the fabrication and the control of microrobots and microrobotic cells. These microrobots are intended to perform various tasks in the so-called Microworld. The scale effects from macroworld to microworld deeply affect robots in the sense that new hard constraints appear as well as new manufacturing facilities. Concerning the nanorobotics, in order to achieve high-efficiency and three-dimensional nanomanipulation and nanoassembly, parallel imaging/manipulation force microscopy and three-dimensional manipulation force microscope, as well as nanmanipulation in the scanning electron microscope, have been developed. Manipulation of nanocomponents, such as nanoparticles, nanowires and nanotubes, have been addressed to build two-dimensional nano patterns and three-dimensional nano structure

    単一運動性微生物の刺激応答計測のためのマイクロロボティックプラットホーム

    Get PDF
    九州工業大学博士学位論文 学位記番号:生工博甲第355号 学位授与年月日:令和元年9月20日1 Introduction|2 Observation Platform|3 Stimulation Platform|4 Application to Actual Motile Microorganisms|5 Conclusion九州工業大学令和元年

    Modeling and experimental validation of a parallel microrobot for biomanipulation

    Get PDF
    The main purpose of this project is the development of a commercial micropositioner's (SmarPod 115.25, SmarAct GmbH) geometrical model. SmarPod is characterized by parallel kinematics and is employed for precise and accurate sample's positioning under SEM microscope, being vacuum-compatible, for various applications. Geometrical modeling represents the preliminar step to fully understand, and possibly improve, robot's closed loop behaviour in terms of task's quality precision, when enterprises does not provide sufficient documentation. The robotic system, in fact, represents in this case a "black box" from which it's possible to extract information. This step is essential in order to improve, consequently, the reliability of bio-microsystem manipulation and characterization. Disposing of a detailed microrobot's model becomes essential to deal with the typical lack of sensing at microscale, as it allows a 3D precise and adequate reconstruction, realized through proper softwares, of the manipulation set-up. The roles of Virtual Reality (VR) and of simulations, carried out, in this case, in Blender environment, are asserted as well as an essential helping tool in mycrosystem's task planning. Blender is a professional free and open-source 3D computer graphics software and it is proven to be a basic instrument to validate microrobot's model, even to simplify it in case of complex system's geometries

    A Review of Haptic Feedback Teleoperation Systems for Micromanipulation and Microassembly

    No full text
    International audienceThis paper presents a review of the major haptic feedback teleoperation systems for micromanipulation. During the last decade, the handling of micrometer-sized objects has become a critical issue. Fields of application from material science to electronics demonstrate an urgent need for intuitive and flexible manipulation systems able to deal with small-scale industrial projects and assembly tasks. Two main approaches have been considered: fully automated tasks and manual operation. The first one require fully pre determined tasks, while the later necessitates highly trained operators. To overcome these issues the use of haptic feedback teleoperation where the user manipulates the tool through a joystick whilst feeling a force feedback, appears to be a promising solution as it allows high intuitiveness and flexibility. Major advances have been achieved during this last decade, starting with systems that enable the operator to feel the substrate topology, to the current state-of-the-art where 3D haptic feedback is provided to aid manipulation tasks. This paper details the major achievements and the solutions that have been developed to propose 3D haptic feedback for tools that often lack 3D force measurements. The use of virtual reality to enhance the immersion is also addressed. The strategies developed provide haptic feedback teleoperation systems with a high degree of assistance and for a wide range of micromanipulation tools. Based on this expertise on haptic for micromanipulation and virtual reality assistance it is now possible to propose microassembly systems for objects as small as 1 to 10 micrometers. This is a mature field and will benefit small-scale industrial projects where precision and flexibility in microassembly are required

    Hybrid optical and magnetic manipulation of microrobots

    Get PDF
    Microrobotic systems have the potential to provide precise manipulation on cellular level for diagnostics, drug delivery and surgical interventions. These systems vary from tethered to untethered microrobots with sizes below a micrometer to a few microns. However, their main disadvantage is that they do not have the same capabilities in terms of degrees-of-freedom, sensing and control as macroscale robotic systems. In particular, their lack of on-board sensing for pose or force feedback, their control methods and interface for automated or manual user control are limited as well as their geometry has few degrees-of-freedom making three-dimensional manipulation more challenging. This PhD project is on the development of a micromanipulation framework that can be used for single cell analysis using the Optical Tweezers as well as a combination of optical trapping and magnetic actuation for recon gurable microassembly. The focus is on untethered microrobots with sizes up to a few tens of microns that can be used in enclosed environments for ex vivo and in vitro medical applications. The work presented investigates the following aspects of microrobots for single cell analysis: i) The microfabrication procedure and design considerations that are taken into account in order to fabricate components for three-dimensional micromanipulation and microassembly, ii) vision-based methods to provide 6-degree-offreedom position and orientation feedback which is essential for closed-loop control, iii) manual and shared control manipulation methodologies that take into account the user input for multiple microrobot or three-dimensional microstructure manipulation and iv) a methodology for recon gurable microassembly combining the Optical Tweezers with magnetic actuation into a hybrid method of actuation for microassembly.Open Acces

    Microdevices and Microsystems for Cell Manipulation

    Get PDF
    Microfabricated devices and systems capable of micromanipulation are well-suited for the manipulation of cells. These technologies are capable of a variety of functions, including cell trapping, cell sorting, cell culturing, and cell surgery, often at single-cell or sub-cellular resolution. These functionalities are achieved through a variety of mechanisms, including mechanical, electrical, magnetic, optical, and thermal forces. The operations that these microdevices and microsystems enable are relevant to many areas of biomedical research, including tissue engineering, cellular therapeutics, drug discovery, and diagnostics. This Special Issue will highlight recent advances in the field of cellular manipulation. Technologies capable of parallel single-cell manipulation are of special interest

    Implementation, modeling, and exploration of precision visual servo systems

    Get PDF

    Flexible Robotic Scanning Device for Intraoperative Endomicroscopy in MIS

    Get PDF
    Optical biopsy methods such as probe-based confocal endomicroscopy can provide intraoperative real-time assessment of tumour margins, including during minimally invasive surgery with flexible endoscopes or robotic platforms. Mosaics can be produced by translating the probe across the target, but it remains difficult to scan over a large field-of-view with a flexible endomicroscope. In this paper, we have developed a novel flexible scanning device for intraoperative endomicroscopy in MIS. A Schott leached imaging bundle was integrated into the device and enables the approach, via a flexible path, to deep and narrow spaces in the human body that otherwise would not accessible. The proposed device uses a gear-based flexible concentric tube scanning mechanism to facilitate large field-of-view mosaicing. Experimental results show that the device is able to scan different surface trajectories (e.g. a spiral pattern over a hemi-spherical surface). Results from lens tissue paper and porcine liver tissue are demonstrated, illustrating a viable scanning approach for endomicroscopy in MIS
    corecore