11,241 research outputs found
Image based visual servoing using algebraic curves applied to shape alignment
Visual servoing schemes generally employ various image features (points, lines, moments etc.) in their control formulation. This paper presents a novel method for using boundary information in visual servoing. Object boundaries are
modeled by algebraic equations and decomposed as a unique sum of product of lines. We propose that these lines can be used to extract useful features for visual servoing purposes. In this paper, intersection of these lines are used as point features in visual servoing. Simulations are performed with a 6 DOF Puma
560 robot using Matlab Robotics Toolbox for the alignment of a free-form object. Also, experiments are realized with a 2 DOF SCARA direct drive robot. Both simulation and experimental results are quite promising and show potential of our new method
Exploring Convolutional Networks for End-to-End Visual Servoing
Present image based visual servoing approaches rely on extracting hand
crafted visual features from an image. Choosing the right set of features is
important as it directly affects the performance of any approach. Motivated by
recent breakthroughs in performance of data driven methods on recognition and
localization tasks, we aim to learn visual feature representations suitable for
servoing tasks in unstructured and unknown environments. In this paper, we
present an end-to-end learning based approach for visual servoing in diverse
scenes where the knowledge of camera parameters and scene geometry is not
available a priori. This is achieved by training a convolutional neural network
over color images with synchronised camera poses. Through experiments performed
in simulation and on a quadrotor, we demonstrate the efficacy and robustness of
our approach for a wide range of camera poses in both indoor as well as outdoor
environments.Comment: IEEE ICRA 201
Model-based vs. model-free visual servoing: A Performance evaluation in microsystems
In this paper, model-based and model-free image based visual servoing (VS) approaches are implemented on a microassembly workstation, and their regulation and tracking performances are evaluated. A precise image based VS relies on computation of the image jacobian. In the model-based visual servoing, the image Jacobian is computed via calibrating the optical system. Precisely calibrated model based VS promises better positioning and tracking performance than the model-free approach. However, in the model-free approach, optical system calibration is not required due to the dynamic Jacobian estimation, thus it has the advantage of adapting to the different operating modes
Positioning and trajectory following tasks in microsystems using model free visual servoing
In this paper, we explore model free visual servoing algorithms by
experimentally evaluating their performances for various tasks
performed on a microassembly workstation developed in our lab. Model
free or so called uncalibrated visual servoing does not need the
system calibration (microscope-camera-micromanipulator) and the
model of the observed scene. It is robust to parameter changes and
disturbances. We tested its performance in point-to-point
positioning and various trajectory following tasks. Experimental
results validate the utility of model free visual servoing in
microassembly tasks
Visual Servoing from Deep Neural Networks
We present a deep neural network-based method to perform high-precision,
robust and real-time 6 DOF visual servoing. The paper describes how to create a
dataset simulating various perturbations (occlusions and lighting conditions)
from a single real-world image of the scene. A convolutional neural network is
fine-tuned using this dataset to estimate the relative pose between two images
of the same scene. The output of the network is then employed in a visual
servoing control scheme. The method converges robustly even in difficult
real-world settings with strong lighting variations and occlusions.A
positioning error of less than one millimeter is obtained in experiments with a
6 DOF robot.Comment: fixed authors lis
Visual servoing of nonholonomic cart
This paper presents a visual feedback control scheme for a nonholonomic cart without capabilities for dead reckoning. A camera is mounted on the cart and it observes cues attached on the environment. The dynamics of the cart are transformed into a coordinate system in the image plane. An image-based controller which linearizes the dynamics is proposed. Since the positions of the cues in the image plane are controlled directly, possibility of missing cues is reduced considerably. Simulations are carried out to evaluate the validity of the proposed scheme. Experiments on a radio controlled car with a CCD camera are also given</p
Image based visual servoing using bitangent points applied to planar shape alignment
We present visual servoing strategies based on bitangents for aligning planar shapes. In order to acquire bitangents we use convex-hull of a curve. Bitangent points are employed in the construction of a feature vector to be used in visual control. Experimental results obtained on a 7 DOF Mitsubishi PA10 robot, verifies the proposed method
Depth adaptive zooming visual servoing for a robot with a zooming camera
To solve the view visibility problem and keep the observed object in the field of view (FOV) during the visual servoing, a depth adaptive zooming visual servoing strategy for a manipulator robot with a zooming camera is proposed. Firstly, a zoom control mechanism is introduced into the robot visual servoing system. It can dynamically adjust the camera's field of view to keep all the feature points on the object in the field of view of the camera and get high object local resolution at the end of visual servoing. Secondly, an invariant visual servoing method is employed to control the robot to the desired position under the changing intrinsic parameters of the camera. Finally, a nonlinear depth adaptive estimation scheme in the invariant space using Lyapunov stability theory is proposed to estimate adaptively the depth of the image features on the object. Three kinds of robot 4DOF visual positioning simulation experiments are conducted. The simulation experiment results show that the proposed approach has higher positioning precision. © 2013 Xin et al
- …
