121,232 research outputs found

    Complex Event Recognition from Images with Few Training Examples

    Full text link
    We propose to leverage concept-level representations for complex event recognition in photographs given limited training examples. We introduce a novel framework to discover event concept attributes from the web and use that to extract semantic features from images and classify them into social event categories with few training examples. Discovered concepts include a variety of objects, scenes, actions and event sub-types, leading to a discriminative and compact representation for event images. Web images are obtained for each discovered event concept and we use (pretrained) CNN features to train concept classifiers. Extensive experiments on challenging event datasets demonstrate that our proposed method outperforms several baselines using deep CNN features directly in classifying images into events with limited training examples. We also demonstrate that our method achieves the best overall accuracy on a dataset with unseen event categories using a single training example.Comment: Accepted to Winter Applications of Computer Vision (WACV'17

    Visual Landmark Recognition from Internet Photo Collections: A Large-Scale Evaluation

    Full text link
    The task of a visual landmark recognition system is to identify photographed buildings or objects in query photos and to provide the user with relevant information on them. With their increasing coverage of the world's landmark buildings and objects, Internet photo collections are now being used as a source for building such systems in a fully automatic fashion. This process typically consists of three steps: clustering large amounts of images by the objects they depict; determining object names from user-provided tags; and building a robust, compact, and efficient recognition index. To this date, however, there is little empirical information on how well current approaches for those steps perform in a large-scale open-set mining and recognition task. Furthermore, there is little empirical information on how recognition performance varies for different types of landmark objects and where there is still potential for improvement. With this paper, we intend to fill these gaps. Using a dataset of 500k images from Paris, we analyze each component of the landmark recognition pipeline in order to answer the following questions: How many and what kinds of objects can be discovered automatically? How can we best use the resulting image clusters to recognize the object in a query? How can the object be efficiently represented in memory for recognition? How reliably can semantic information be extracted? And finally: What are the limiting factors in the resulting pipeline from query to semantics? We evaluate how different choices of methods and parameters for the individual pipeline steps affect overall system performance and examine their effects for different query categories such as buildings, paintings or sculptures

    FAME: Face Association through Model Evolution

    Full text link
    We attack the problem of learning face models for public faces from weakly-labelled images collected from web through querying a name. The data is very noisy even after face detection, with several irrelevant faces corresponding to other people. We propose a novel method, Face Association through Model Evolution (FAME), that is able to prune the data in an iterative way, for the face models associated to a name to evolve. The idea is based on capturing discriminativeness and representativeness of each instance and eliminating the outliers. The final models are used to classify faces on novel datasets with possibly different characteristics. On benchmark datasets, our results are comparable to or better than state-of-the-art studies for the task of face identification.Comment: Draft version of the stud
    • …
    corecore