443,186 research outputs found

    Morphometric analyses of the visual pathways in macular degeneration

    Full text link
    Introduction. Macular degeneration (MD) causes central visual field loss. When field defects occur in both eyes and overlap, parts of the visual pathways are no longer stimulated. Previous reports have shown that this affects the grey matter of the primary visual cortex, but possible effects on the preceding visual pathway structures have not been fully established. Method. In this multicentre study, we used high-resolution anatomical magnetic resonance imaging and voxel-based morphometry to investigate the visual pathway structures up to the primary visual cortex of patients with age-related macular degeneration (AMD) and juvenile macular degeneration (JMD). Results. Compared to age-matched healthy controls, in patients with JMD we found volumetric reductions in the optic nerves, the chiasm, the lateral geniculate bodies, the optic radiations and the visual cortex. In patients with AMD we found volumetric reductions in the lateral geniculate bodies, the optic radiations and the visual cortex. An unexpected finding was that AMD, but not JMD, was associated with a reduction in frontal white matter volume. Conclusion. MD is associated with degeneration of structures along the visual pathways. A reduction in frontal white matter volume only present in the AMD patients may constitute a neural correlate of previously reported association between AMD and mild cognitive impairment. Keywords: macular degeneration - visual pathway - visual field - voxel-based morphometryComment: appears in Cortex (2013

    Early diffusion evidence of retrograde transsynaptic degeneration in the human visual system

    Get PDF
    We investigated whether diffusion tensor imaging (DTI) indices of white matter integrity would offer early markers of retrograde transsynaptic degeneration (RTD) in the visual system after stroke Objective: We investigated whether diffusion tensor imaging (DTI) indices of white matter integrity would offer early markers of retrograde transsynaptic degeneration (RTD) in the visual system after stroke. Methods: We performed a prospective longitudinal analysis of the sensitivity of DTI markers of optic tract health in 12 patients with postsynaptic visual pathway stroke, 12 stroke controls, and 28 healthy controls. We examined group differences in (1) optic tract fractional anisotropy (FA-asymmetry), (2) perimetric measures of visual impairment, and (3) the relationship between FA-asymmetry and perimetric assessment. Results: FA-asymmetry was higher in patients with visual pathway lesions than in control groups. These differences were evident 3 months from the time of injury and did not change significantly at 12 months. Perimetric measures showed evidence of impairment in participants with visual pathway stroke but not in control groups. A significant association was observed between FA-asymmetry and perimetric measures at 3 months, which persisted at 12 months. Conclusions: DTI markers of RTD are apparent 3 months from the time of injury. This represents the earliest noninvasive evidence of RTD in any species. Furthermore, these measures associate with measures of visual impairment. DTI measures offer a reproducible, noninvasive, and sensitive method of investigating RTD and its role in visual impairment

    Visual pathway function and structure in Wolfram syndrome: Patient age, variation and progression

    Get PDF
    Background/aimsTo report alterations in visual acuity and visual pathway structure over an interval of 1–3 years in a cohort of children, adolescents and young adults who have Wolfram syndrome (WFS) and to describe the range of disease severity evident in patients with WFS whose ages differed by as much as 20 years at first examination.MethodsAnnual, prospective ophthalmological examinations were performed in conjunction with retinal nerve fibre layer (RNFL) analysis. Diffusion tensor MRI-derived fractional anisotropy was used to assess the microstructural integrity of the optic radiations (OR FA).ResultsMean age of the 23 patients with WFS in the study was 13.8 years (range 5–25 years). Mean log minimum angle resolution visual acuity was 0.66 (20/91). RNFL thickness was subnormal in even the youngest patients with WFS. Average RNFL thickness in patients with WFS was 57±8 µ or ~40% thinner than that measured in normal (94±10 µ) children and adolescents (P&lt;0.01). Lower OR FA correlated with worse visual acuity (P=0.006). Subsequent examinations showed declines (P&lt;0.05) in visual acuity, RNFL thickness and OR FA at follow-up intervals of 12–36 months. However, a wide range of disease severity was evident across ages: some of the youngest patients at their first examination had deficits more severe than the oldest patients.ConclusionThe genetic mutation of WFS causes damage to both pregeniculate and postgeniculate regions of the visual pathway. The damage is progressive. The decline in visual pathway structure is accompanied by declines of visual function. Disease severity differs widely in individual patients and cannot be predicted from their age.</jats:sec

    The role of human ventral visual cortex in motion perception.

    Get PDF
    Visual motion perception is fundamental to many aspects of visual perception. Visual motion perception has long been associated with the dorsal (parietal) pathway and the involvement of the ventral 'form' (temporal) visual pathway has not been considered critical for normal motion perception. Here, we evaluated this view by examining whether circumscribed damage to ventral visual cortex impaired motion perception. The perception of motion in basic, non-form tasks (motion coherence and motion detection) and complex structure-from-motion, for a wide range of motion speeds, all centrally displayed, was assessed in five patients with a circumscribed lesion to either the right or left ventral visual pathway. Patients with a right, but not with a left, ventral visual lesion displayed widespread impairments in central motion perception even for non-form motion, for both slow and for fast speeds, and this held true independent of the integrity of areas MT/V5, V3A or parietal regions. In contrast with the traditional view in which only the dorsal visual stream is critical for motion perception, these novel findings implicate a more distributed circuit in which the integrity of the right ventral visual pathway is also necessary even for the perception of non-form motion

    Organization of the dorsal lateral geniculate nucleus in the mouse

    Get PDF
    AbstractThe dorsal lateral geniculate nucleus (dLGN) of the thalamus is the principal conduit for visual information from retina to visual cortex. Viewed initially as a simple relay, recent studies in the mouse reveal far greater complexity in the way input from the retina is combined, transmitted, and processed in dLGN. Here we consider the structural and functional organization of the mouse retinogeniculate pathway by examining the patterns of retinal projections to dLGN and how they converge onto thalamocortical neurons to shape the flow of visual information to visual cortex.</jats:p

    Sparse visual models for biologically inspired sensorimotor control

    Get PDF
    Given the importance of using resources efficiently in the competition for survival, it is reasonable to think that natural evolution has discovered efficient cortical coding strategies for representing natural visual information. Sparse representations have intrinsic advantages in terms of fault-tolerance and low-power consumption potential, and can therefore be attractive for robot sensorimotor control with powerful dispositions for decision-making. Inspired by the mammalian brain and its visual ventral pathway, we present in this paper a hierarchical sparse coding network architecture that extracts visual features for use in sensorimotor control. Testing with natural images demonstrates that this sparse coding facilitates processing and learning in subsequent layers. Previous studies have shown how the responses of complex cells could be sparsely represented by a higher-order neural layer. Here we extend sparse coding in each network layer, showing that detailed modeling of earlier stages in the visual pathway enhances the characteristics of the receptive fields developed in subsequent stages. The yield network is more dynamic with richer and more biologically plausible input and output representation

    CA1-projecting subiculum neurons facilitate object-place learning.

    Get PDF
    Recent anatomical evidence suggests a functionally significant back-projection pathway from the subiculum to the CA1. Here we show that the afferent circuitry of CA1-projecting subicular neurons is biased by inputs from CA1 inhibitory neurons and the visual cortex, but lacks input from the entorhinal cortex. Efferents of the CA1-projecting subiculum neurons also target the perirhinal cortex, an area strongly implicated in object-place learning. We identify a critical role for CA1-projecting subicular neurons in object-location learning and memory, and show that this projection modulates place-specific activity of CA1 neurons and their responses to displaced objects. Together, these experiments reveal a novel pathway by which cortical inputs, particularly those from the visual cortex, reach the hippocampal output region CA1. Our findings also implicate this circuitry in the formation of complex spatial representations and learning of object-place associations

    A missense variant (P10L) of the melanopsin (OPN4) gene in seasonal affective disorder

    Get PDF
    Background: Melanopsin, a non-visual photopigment, may play a role in aberrant responses to low winter light levels in Seasonal Affective Disorder (SAD). We hypothesize that functional sequence variation in the melanopsin gene could contribute to increasing the light needed for normal functioning during winter in SAD. Methods: Associations between alleles, genotypes, and haplotypes of melanopsin in SAD participants (n = 130) were performed relative to controls with no history of psychopathology (n = 90). Results: SAD participants had a higher frequency of the homozygous minor genotype (T/T) for the missense variant rs2675703 (P10L) than controls, compared to the combined frequencies of C/C and C/T. Individuals with the T/T genotype were 5.6 times more likely to be in the SAD group than the control group, and all 7 (5%) of individuals with the T/T genotype at P10L were in the SAD group. Limitations: The study examined only one molecular component of the non-visual light input pathway, and recruitment methods for the comparison groups differed. Conclusion: These findings support the hypothesis that melanopsin variants may predispose some individuals to SAD. Characterizing the genetic basis for deficits in the non-visual light input pathway has the potential to define mechanisms underlying the pathological response to light in SAD, which may improve treatment. © 2008 Elsevier B.V

    Network adaptation improves temporal representation of naturalistic stimuli in drosophila eye: II Mechanisms

    Get PDF
    Retinal networks must adapt constantly to best present the ever changing visual world to the brain. Here we test the hypothesis that adaptation is a result of different mechanisms at several synaptic connections within the network. In a companion paper (Part I), we showed that adaptation in the photoreceptors (R1-R6) and large monopolar cells (LMC) of the Drosophila eye improves sensitivity to under-represented signals in seconds by enhancing both the amplitude and frequency distribution of LMCs' voltage responses to repeated naturalistic contrast series. In this paper, we show that such adaptation needs both the light-mediated conductance and feedback-mediated synaptic conductance. A faulty feedforward pathway in histamine receptor mutant flies speeds up the LMC output, mimicking extreme light adaptation. A faulty feedback pathway from L2 LMCs to photoreceptors slows down the LMC output, mimicking dark adaptation. These results underline the importance of network adaptation for efficient coding, and as a mechanism for selectively regulating the size and speed of signals in neurons. We suggest that concert action of many different mechanisms and neural connections are responsible for adaptation to visual stimuli. Further, our results demonstrate the need for detailed circuit reconstructions like that of the Drosophila lamina, to understand how networks process information
    corecore